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ON RICCI CURVATURE AND VOLUME GROWTH
IN DIMENSION THREE

Martin Reiris

Abstract

We prove that any complete metric on R3 minus an open ball,
with non-negative Ricci curvature and quadratic Ricci-curvature
decay, has cubic volume growth.

1. Introduction

In the study of non-compact manifolds, a simple and at the same
time rich invariant worth investigating is the rate of volume growth of
geodesic spheres. The importance of this invariant roots in the fact that
it can provide global information under either local or global conditions
on the curvature.

Let (M,g) be a non-compact and connected complete Riemannian
manifold of dimension n ≥ 3. If the Ricci curvature is non-negative, then
the Bishop—Gromov volume-comparison tells that the volume growth
is at most Euclidean,

(1) lim
r→∞

V ol(B(o, r))

r n
= ρ ̸=∞,

and Yau showed [30] that it is at least linear,

lim inf
r→∞

V ol(B(o, r))

r
= ρ′ > 0.

If Ric ≥ 0 and furthermore M is three-dimensional, then G. Liu [17]
proved recently that M is either diffeomorphic to R3 or the universal
cover splits with a R-factor. This extends an earlier result of Schoen and
Yau [27] saying that M is diffeomorphic to R3 when Ric > 0. Assuming
now Ric ≥ 0, n = 3, and Euclidean volume growth (i.e., ρ ̸= 0), then
Zhu [31] showed that M is contractible. Combined with Liu’s result this
says that the only open three-manifold admitting a complete metric of
non-negative Ricci curvature and Euclidean volume growth is R3.

In arbitrary dimensions but also when (M,g) has Euclidean volume
growth and non-negative Ricci curvature, Perelman [22] proved that M
is contractible when ρ ≥ ρn. Also in this context, Cheeger and Colding
[6] showed that the limit of scalings of (M,g) has always the structure
of a metric cone, Perelman [23] realized that it may not be unique,
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and Tian and Cheeger [8] gave curvature conditions for uniqueness.
Volume growth is also tied to the fundamental group as put forward by
Milnor [20]. In manifolds of non-negative Ricci curvature, this fact was
exploited by Li [15] and further by Anderson [2].

Playing somehow in the reverse direction, several authors have also
studied volume growth under various curvature-decaying conditions. For
instance, Cheeger, Gromov, and Taylor [7] proved less than Euclidean
volume growth (i.e., ρ = 0) under the lower quadratic curvature decay
Ric ≥ Λ/r2 (r(p) = dist(p, o)), and, by disregarding the assumption
Ric ≥ 0, Lott and Shen [19] gave interesting examples of complete
metrics in Rn with slow volume growth and quadratic curvature decay,
that is, with |Ric| ≤ Λ/r2.

In this article, we provide optimal hypothesis in dimension three to
have cubic volume growth. The main result, which we state next, applies
to complete metrics g on the manifold with boundary R3 \B3, where B3

is the open unit ball of R3.

Theorem 1.1. Let g be a complete metric on R3 \ B3 with non-
negative Ricci curvature and quadratic curvature decay. Then g has cu-
bic volume growth.

Combined with the results of G. Liu and Zhu, we obtain the following
Corollary.

Corollary 1.1. Let (M,g) be a non-compact and boundaryless three-
dimensional manifold of non-negative curvature and quadratic curvature
decay. Then (M,g) has Euclidean volume growth iff M is diffeomorphic
to R3.

In view of this corollary, the importance of having a theorem like
Theorem 1.1 stated for metrics on the manifold with boundary R3 \B3,
which gives much more applicability, is now apparent.

Theorem 1.1 is optimal in various ways. First, the Lott–Shen exam-
ples show that metrics in R3 with quadratic curvature decay can display
dramatic volume distortions if one disregards entirely the signature of
the Ricci tensor. Second, there are simple spherically symmetric metrics
in R3 with Ric ≥ 0 (outside a ball), ρ = 0, and |Ric| ≤ Λ/r2α for any
α < 1 that show that the hypothesis of quadratic curvature decay in
Theorem 1.1 can be hardly weakened. Third, replacing in Theorem 1.1
R3 by Rn and “cubic” by ”Euclidean” can also create a false statement.
For instance, the flat product metric on S1 × R+, which has linear vol-
ume growth, shows that it is false when n = 2, while the Tau-NUT Ricci
flat instanton [14] in R4, which has cubic volume growth, shows that it
is false when n = 4. We do not know at the moment if n = 3 is the only
dimension where such statement holds.

This article was partly motivated by investigations on the asymptotic
of isolated bodies in General Relativity, a subject very closely related to
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the Theory of Gravitational Instantons. Concretely, Theorem 1.1 found
the following application in [25].

Theorem. Any vacuum (strictly) stationary spacetime-end whose
Killing field has its norm bounded away from zero is necessarily asymp-
totically flat with Schwarzschidian fall off.

In this statement a spacetime-end, as was defined in [25], is diffeomor-
phic to (R3 \B3)×R, and its Lorentzian metric is complete up to be the
boundary. Strictly stationary means that the Killing field is time-like
everywhere. In physical applications, one must understand spacetime-
ends as a part of a bigger globally hyperbolic one far away from the
“sources.” In this sense, the theorem says that isolated systems in Gen-
eral Relativity are necessarily asymptotically flat with Schwarzschidian
fall off. For this application, it is crucial that Theorem 1.1 is stated
for metric in R3 \ B3. This is partly because, at least in vacuum, the
strictly stationary Killing field on an end does not extend to a time-like
Killing field in the bigger globally hyperbolic space unless the space is
Minkowski [3]. We point out that by the proximity of the subjects it
is likely that Theorem 1.1 can find further applications in the study of
four-dimensional Instantons as well.

In the next part of the introduction we explain in great detail the
arguments behind the proof of Theorem 1.1. We delineate the contents
of the article afterward.

Let us start with some preliminary words on the statement of The-
orem 1.1. By extending g from R3 \ B3 to R3 1 we can assume with-
out loss of generality that a metric g in R3 is given, having Ric ≥ 0
outside B3 and quadratic curvature decay, namely |Ric| ≤ Λ/r2 with
r(p) = dist(o, p) and o = (0, 0, 0). Now let T (∂B3, r) be the tubular
neighborhood of ∂B3 inside R3 \B3 and of radius r. By the volume com-
parison, the quotient V ol(T (∂B3, r))/r3 is monotonically deceasing in r
and therefore has a limit that coincides with the limit (1) in the space
(R3, g). Thus we need to prove that ρ > 0.

The outline of the proof of Theorem 1.1 (which proceeds by contra-
diction) is somehow simple. In gross terms one proves that if the volume
growth is non-cubic (i.e., ρ = 0), then (under the hypothesis of Theo-
rem 1.1) one can partition R3 into a set of compact manifolds with
a sufficient understanding of their topology to be able to prove that
their union is topologically incompatible with R3. More precisely, one is
able to write R3 as the union of an open set with compact closure and
containing the origin o, and a set

(2)
i=∞⋃

i=i0

M(T 2o
i+1, T

2o
i ),

1This can be done also to have every point in ∂B3 at a constant distance from o.
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where each M(T 2o
i+1, T

2o
i ) is a three-manifold with the tori T 2o

i+1 and
T 2o
i as its only boundary components. Moreover, in this union every

M(T 2o
i+1, T

2o
i ) is an irreducible manifold with incompressible boundary

(hereafter IIB-manifold), with the interiors M(T 2o
i+1, T

2o
i )◦ pairwise dis-

joint. In this scenario, one reaches a contradiction as follows. Pick a
coordinate sphere S2r = ∂B3(o, r̄) in R3 of coordinate radius r̄ large
enough to ensure that S2r̄ lies inside the union (2) (indeed, inside a fi-
nite union of M(T 2o

i+1, T
2o
i )’s). Because the union is also irreducible (see

Proposition 2.1), the sphere S2r̄ must bound a three-ball in it, which
forcefully must be B3(o, r̄). But then the origin o must belong to the
union (2), which was not assumed.

We explain now the construction of the manifolds M(T 2o
i+1, T

2o
i ) and

point out the hypotheses that are needed to show that they are IIB
manifolds. This will help the reader to identify the important steps
inside the technical discussion later.

For every b > a > 0, let Ag(a, b) = Bg(o, b) \ Bg(o, a) be the (open)
metric annulus with radii a and b and center the origin o. Then, to
the effect of constructing the manifolds M(T 2o

i+1, T
2o
i ), one first defines

annuli decompositions as follows.

Definition 1. A set U = {Uk,l; k = k0 + 2j, j = 0, 1, 2, 3, ..., l =
1, 2, . . . , l(k)} of compact and connected three-submanifolds of (R3, g)
with smooth boundary is an annuli decomposition iff the following con-
ditions are fulfilled:

1. Uk,l ⊂ Ag(10k−1, 10k+3),
2. Uk,l ∩Ag(10k−1, 10k) ̸= ∅, and Uk,l ∩Ag(10k+1, 10k+2) ̸= ∅,
3. ∂Uk,l ⊂

(
Ag(10k−1, 10k) ∪Ag(10k+1, 10k+2)

)
,

4. If (k, l) ̸= (k′, l′), then U◦k,l and U◦k′,l′ are disjoint and if Uk,l and
Uk′,l′ intersect then they do in a set of boundary components (of
both, Uk,l and Uk′,l′),

5. Uk0−2 := R3 \
( ⋃
Uk,l∈U

Uk,l

)◦
is compact.

In other words, an annuli decomposition is just a partition of R3 into a
set of pieces {Uk,l} adapted to the set of metric annuli

{
Ag(10k−1, 10k+3),

k = k0, k0+2, . . .
}
and enjoying uniform “size” conditions (i.e., satisfy-

ing items 1–3). They are soft structures and exist independently of the
metric g. An example of one is represented in Figure 1.

Then one proves that under the hypothesis of Theorem 1.1 there is
an annuli decomposition of (R3, g) where every piece Uk,l posses a well-
understood geometry and topology. This is the content of the following
proposition, which we prove in Section 2.5 and which guarantees the
existence of an annuli decomposition whose pieces Uk,l, when endowed
with the scaled metrics gk := g/102k , are close in the Gromov–Hausdorff
(GH) distance to an interval or a two-orbifold Xk,l and for which, in
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addition, there is a fibration fk,l : Uk,l → Xk,l encoding precisely the
relation between the geometry and topology of (Uk,l, gk) and the spaces
Xk,l.

Proposition 2.4. Let g be a complete metric in R3 with Ric ≥ 0
outside a compact set, quadratic curvature decay, and less-than-cubic-
volume growth. Then there is an annuli decomposition U with the fol-
lowing properties:

For every ϵ > 0, there is k(ϵ) such that for any k ≥ k(ϵ) every
piece (Uk,l, gk) is ϵ-close in the GH-metric to a space Xk,l of one of the
following two forms:

D̃1. An interval, in which case Uk,l is either diffeomorphic to T2 × I

or a solid torus B2 × S1.
D̃2. A two-orbifold, in which case Uk,l is diffeomorphic to a Seifert

manifold with at least one boundary component.

Moreover, there are fibrations fk,l : Uk,l → Xk,l, such that for any k ≥
k(ϵ) the fibers f−1k,l (x), which are diffeomorphic either to T2 or S1, are
ϵ-collapsed, and:

Ĩ1. In case D̃1, either Sing(Xk,l) is empty or is one of the extreme
points of the interval. In addition, for any non-singular point x,
the fiber f−1k,l (x) is diffeomorphic to T2, and if x is a singular

point, then f−1k,l (x) is diffeomorphic to S1.

Ĩ2. In case D̃2, the fibers f−1k,l (x), which are all diffeomorphic to S1,
are the fibers of the Seifert-fibration.

The proposition is an immediate consequence of the Cheeger–Gromov–
Fukaya theory of volume collapse with bounded diameter and curvature
applied to the sequence of annuli {(Ag(10k−1, 10k+4), gk)} and in this
sense there is little novel in it. Despite the stringent constraints on the
nature of the pieces Uk,l of this annuli decomposition, the topology of R3

is, at this point, not contradicted in any way. Proposition 2.4 requires
only the non-negativity of Ricci outside a compact set in a mild form
(and may not even be necessary).

The manifolds M(T 2o
i+1, T

2o
i ) are defined from the annuli decomposi-

tion U in Proposition 2.4 as follows. Denote by N to the set of bound-
ary components of the manifolds Uk,l forming U . These manifolds are
tori and denoted by T 2. For every T 2 ∈ N , let M(T 2) be the closure
of the bounded region enclosed by T 2 in R3. Then consider the set
N o = {T 2o

i , i = 1, 2, 3, . . .} of all the tori in N such that o ∈ M(T 2o
i )

and ordered in such a way that M(T 2o
i ) ⊂ M(T 2o

i′ ) whenever i′ > i.
Finally, define

M(T 2o
i+1, T

2o
i ) := M(T 2o

i+1) \M(T 2o
i )◦.

As said, to prove Theorem 1.1 we need to show that for any i ≥ i0,
with i0 big enough, the manifolds M(T 2o

i+1, T
2o
i ) are IIB manifolds. This
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is done by ruling out the presence of certain crucial pieces Uk,j inside
the M(T 2o

i+1, T
2o
i )’s for i ≥ i0. It is at this stage when one must rely

heavily upon all the hypotheses of Theorem 1.1. Let us discuss this
more concretely in the next paragraph. Full details, however, must be
found inside the proof of Theorem 1.1.

First, some terminology. Given ϵ > 0 let, i(ϵ) > 0 be large enough
that for any piece Uk,l in R3 \M(T 2o

i(ϵ))
◦ we have k ≥ k(ϵ), where k(ϵ) is

the one provided by Proposition 2.4. Then we say that a piece Uk,l in
R3 \ M(T 2o

i(ϵ))
◦ is of type I(ϵ) if (Uk,l, gk) is ϵ-close in the GH-distance

to an interval. If not, then (Uk,l, gk) is ϵ-close to a two-orbifold and
we say that it is of type II(ϵ). From now on we study the manifolds
M(T 2o

i+1, T
2o
i ) with i ≥ i(ϵ). First, as shown easily in Section 2.3, the two

consecutive tori T 2o
i and T 2o

i+1 are boundary components of one single
piece Uk,l. If such piece is of type I(ϵ), then it has to be diffeomorphic
to T2 × I and is thus a IIB manifold. If not, then we have two options:
(i) all the Uk,l pieces forming M(T 2o

i+1, T
2o
i ) are of type II(ϵ) or (ii) at

least one of the pieces Uk,l forming M(T 2o
i+1, T

2o
i ) is of type I(ϵ). In case

(i), M(T 2o
i+1, T

2o
i ) is then a union of Seifert manifolds (with the Seifert

fibrations coinciding at any intersection) and therefore a Seifert manifold
itself. Thus, in this case M(T 2o

i+1, T
2o
i ) is Seifert, with two boundary

components (T 2o
i+1 and T 2o

i ) and hence a IIB manifold (see Section 2.2).
We treat now the more involved case (ii). Denote by Ui+1,i to the union

of all the pieces Uk,l in M(T 2o
i+1, T

2o
i ) of type II(ϵ) and by Ûi+1,i to

the only connected component of Ui+1,i containing T 2o
i+1 and T 2o

i . Let

N̂i+1,i be the set of of boundary components of Ûi+1,i other than T 2o
i+1

and T 2o
i . Thus every torus T 2 in N̂i+1,i is the boundary of a piece of

type I(ϵ) and a piece of type II(ϵ). In particular, such a torus inherits
from the piece of type II(ϵ) the Seifert fibration {C } by short loops.
Also, every T 2 in N̂i+1,i either bounds, as an embedded torus in R3,

a solid torus (i.e., M(T 2) is a solid torus) or not. Tori T 2 ∈ N̂i+1,i

in the former case are denoted by T 2!, while tori in the last case are
denoted by T 2♦. If the mentioned loops {C } in a torus T 2! ∈ N̂i+1,i are
non-contractible inside M(T 2!), then, as shown easily in Section 2.2,
one can extend the Seifert fibration {C } to the whole M(T 2!). On the
other hand, a decisive step in this article consists in proving that if ϵ
is chosen small enough (as we assume below), then there are no tori
T 2! ∈ N̂i+1,i for which the loops {C } are contractible inside M(T 2!).
This is a consequence of the lengthy Proposition 3.1, which relies upon
Proposition 2.3. The non-negativity of Ricci is here fundamentally used.
After this type of boundary component T 2! ∈ N̂i+1,i is ruled out, one
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can argue as follows. Write M(T 2o
i+1, T

2o
i ) as

[( ⋃

Uk,j⊂Ûi+1,i

Uk,j

)⋃( ⋃

T 2!∈N̂i+1,i

M(T 2!)

)]⋃[ ⋃

T 2♦∈N̂i+1,i

M(T 2♦)

]
.

Then, as we just explained, the manifold in the first square bracket is
naturally a Seifert manifold with at least two boundary components
(T 2o

i+1 and T 2o
i ), and hence a IIB manifold. On the other hand, a simple

argument in three-dimensional topology (see Section 2.2) shows that ev-
ery manifold M(T 2♦) inside the second square bracket is a IIB manifold
too. Proposition 2.1 then shows that M(T 2o

i+1, T
2o
i ) is also a IIB manifold

when i ≥ i0 := i(ϵ), as desired.

The article is organized as follows. In Section 2.1, we introduce some
basic notation. In Section 2.2, we discuss elementary facts about two-
manifolds embedded in R3 and IIB-manifolds. This section is important
and is used several times. Then, in Section 2.3, we reintroduce annuli
decomposition and prove their basic properties. The whole Section 2.4
develops the main elements of the Cheeger–Gromov–Fukaya theory on
three-manifolds with boundary. To our knowledge this has not been
discussed previously in the literature with the necessary detail. This
justifies our exhaustive presentation, which, incidentally, could be of
use in other investigations. The section ends with Lemma 2.3, which
is the first simple but relevant application. Lemma 2.3 will be used in
the proof of the fundamental Proposition 3.1. In Section 2.5, we prove
the commented Proposition 2.4. Section 3 is the crucial section of the
article. It starts proving the fundamental Proposition 3.1 and ends with
the proof of Theorem 1.1 along the lines mentioned above. We explain
in the appendix a couple of technical propositions whose inclusion inside
the text would cause much disruption. The article has a good amount
of background material, examples, and illustrations.

Acknowledgment. We would like to thank the referee for useful ex-
pository suggestions.

2. Preliminaries

2.1. Basic notation. Sn, n ≥ 1 will be the unit sphere in Rn+1 and
T2 = S1×S1 the two-dimensional torus. S1 and T2 will be thought both
as manifolds and as Lie groups. Furthermore, Bn(o, r) = {x̄ ∈ Rn, |x̄| <
r} will be the open ball of center the origin o = (0, 0, 0) and radius r
(|x̄| is the Euclidean norm of a point x̄ of Rn). Bn = Bn(o, 1). I = B1.

Let (M,g) be a compact connected Riemannian manifold with bound-
ary. The Riemannian metric g induces a metric dg = distg in M (as
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usual) by

(3) dg(p, q) = inf{lengthg(γ(p, q)), γ(p, q) C1-curve from p to q}.

However, if (Ω, g) ⊂ (M,g), then on Ω one can consider two different
distances, the distance (3) of (Ω, g) and the distance (3) of (M,g) re-
stricted to Ω. This situation will appear often, and for this reason and
to avoid confusion we will denote them by dΩg and dMg , respectively.

In this article, the Riemannian space (Ω, g) will also denote the metric
space (Ω, dΩg ).

We will always use the following definitions of diameter diamg(Ω)
and radius (to the boundary) radg(Ω), even when (Ω, g) ⊂ (M,g):

diamg(Ω) = sup{dΩg (p, q); p, q ∈ Ω}, radg(Ω) = sup{dΩg (p, ∂Ω); p ∈ Ω}.

Manifold interiors Ω \ ∂Ω are denoted by Ω◦. To us, a metric ball of
center p ∈ Ω◦ and radius r is a geodesic ball if r < dΩg (p, ∂Ω).

The ends of theorems, lemmas, and propositions are marked with
“q.e.d,” while the end of claims, steps, or examples, are marked with a
#.

2.2. Surfaces in R3 and IIB three-manifolds. From now on, we
let S be a smoothly embedded compact, orientable, and boundaryless
surface in R3. Any S divides R3 into two open connected components.
We will denote by M(S) the closure of the bounded component. For
instance, if S ∼ S2, then S bounds a three-ball [1]. If S ∩ S′ = ∅, then
either

(4) M(S) ∩M(S′) = ∅, M(S) ⊂M(S′)◦, or M(S′) ⊂M(S)◦.

Moreover, if S′ ⊂ M(S)◦, then S belongs to R3 \M(S′) and therefore
M(S′) ⊂ M(S)◦. In particular, if S′ ∼ S2 and S′ ⊂ M(S)◦, then S′

bounds a three-ball inside M(S)◦. Recall that a three-manifold is irre-
ducible if every embedded two-sphere bounds a three-ball. Thus for any
S, M(S) is an irreducible manifold.

We claim that if S ∼ T2, then either M(S) is a solid torus—i.e.,
∼ B̄2 × S1—or S = ∂M(S) is incompressible in M(S), where, recall,
N is an incompressible boundary component of a manifold M if i∗ :
π1(N) → π1(M) is injective (here i : N → M is the inclusion). To see
this, think of S as a surface in S3 via S ⊂ R3 ⊂

(
R3 ∪ {∞}

)
∼ S3.

If M(S) is a solid torus, we are done. If not, then S3 \ M(S)◦ is a
solid torus (this is due to Alexander [1]). If S3 \M(S)◦ represents the
unknot, then M(S) is a solid torus but we are assuming that it is not.
Then S3 \ M(S)◦ is not the unknot. Theorem 11.2 in [16] shows that
in this case S is incompressible in M(S), as claimed. Summarizing, for
any S ∼ T2, M(S) is either a solid torus or an irreducible manifold with
incompressible boundary.
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Other examples of irreducible manifolds with incompressible bound-
ary components (in short, “IIB” manifolds) are compact Seifert man-
ifolds with at least two boundary components [28, pp. 431–432 and
Corollary 3.3]. Recall that a Seifert manifold is one admitting a folia-
tion C by circles C around any of which there is a fibered neighborhood
isomorphic to a fibered solid torus or Klein bottle (see [28, pg 428]. The
class of IIB manifolds is closed under sums along boundary components.
Precisely, we have (Lemma 1.1.4 in [29]) the following.

Proposition 2.1.

I. Let M1 and M2 be two IIB manifolds. and let f : N1 → N2

be a diffeomorphism between a boundary component N1 of M1

and a boundary component N2 of M2. Then the manifold that
results from identifying through f the boundary N1 of M1 to the
boundary N2 of M2 is a IIB manifold.

II. Let M1 be a IIB manifold, and let f : N1 → N2 be a diffeomor-
phism between the boundary components N1 ̸= N2 of M1. Then
the manifold that results from identifying through f the boundary
N1 to the boundary N2 of the manifold M1 is a IIB manifold.

Therefore, any sum of IIB manifolds along any number of boundary
components is a IIB manifold.

However, there is a simple but important situation when the sum of
a IIB manifold and a non-IIB manifold results in a IIB manifold. The
case is when M1 is a Seifert manifold with Seifert structure C and at
least three-boundary components, M2 is a solid torus, and the gluing
function f : N1(⊂ ∂M1) → N2(= ∂M2) send circles C in C into non-
contractible circles f(C ) as circles in M2. The reason is that in this
situation the S1-foliation f(C) of N2 = ∂M2 can always be extended to
a Seifert structure in M2 and thus making the sum a Seifert manifold
with at least two boundary components and therefore a IIB manifold.
To construct the extension of f(C), proceed as follows. OnM2 ∼ B2×S1,
denote points by (x̄, s), x̄ ∈ B2, and s ∈ S1. Then, for any r ∈ [0, 1] define
Fr : B2 × S1 → B2 × S1 by Fr(x̄, s) = (rx̄, s). The desired extension of
f(C) is {Fr(C );C ∈ C, r ∈ [0, 1]}.

2.3. Annuli decompositions. Let g be a complete metric in R3. For
every b > a > 0, we let Ag(a, b) = Bg(o, b) \ Bg(o, a) (resp. Ag[a, b] =

Bg(o, b) \Bg(o, a)) be the open (resp. closed) annulus with radii a and
b and center the origin o.

Definition 1. A set U = {Uk,l; k = k0 + 2j, j = 0, 1, 2, 3, . . . , l =
1, 2, . . . , l(k)} of compact and connected three-submanifolds of R3 with
smooth boundary is an annuli decomposition iff the following conditions
are fulfilled:

1) Uk,l ⊂ Ag(10k−1, 10k+3),
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Figure 1. On the left side, the figure schematizes a part
of an annuli decomposition. We have indicated only the
pieces Uk,1 and Uk,2 but every region enclosed by thick
lines is a piece Uk,l. We have also explicitly indicated the
surfaces So

i , however, with a T 2o
i , as this is the notation

to be used in Section 3 where the proof of Theorem 1.1
is carried out. On the right side is represented the cor-
responding part of the tree induced by the order ≪. On
both sides we have enclosed in a dash/point line (−·−·−)
the manifoldM(T 2o

i+1, T
2o
i ). On the left it can also be seen

crossed thick lines. This is to exemplify the construction
of the special annuli decomposition in Proposition 2.4 in-
side Section 2.5 (to be used inside the proof of Theorem
1.1). The cross indicates that such “cuts,” as we refer
them there, are to be discarded.

2) Uk,l ∩Ag(10k−1, 10k) ̸= ∅, and Uk,l ∩Ag(10k+1, 10k+2) ̸= ∅,
3) ∂Uk,l ⊂

(
Ag(10k−1, 10k) ∪Ag(10k+1, 10k+2)

)
,

4) If (k, l) ̸= (k′, l′), then U◦k,l and U◦k′,l′ are disjoint, and if Uk,l and
Uk′,l′ intersect, then they do in a set of boundary components (of
both, Uk,l and Uk′,l′),

5) Uk0−2 := R3 \
( ⋃
Uk,l∈U

Uk,l
)◦

is compact.
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Let N be the set of boundary components of the manifolds Uk,l in an
annuli decomposition U . Elements of N are pairwise disjoint compact,
orientable, and embedded surfaces. We can order them as follows: S ≪
S′ iff M(S) ⊂ M(S′). The order is not necessarily a linear order, as
there can be two elements not related. However, there is an important
subset that is linearly ordered—this is the set N o = {S ∈ N ; o ∈M(S)}
(use (4)). Thus N o = {So

1 , S
o
2 , S

o
3 , . . .} with So

1 ≪ So
2 ≪ So

3 ≪ . . .. We
will be using this notation (the upper-index o is from “origin”). We will
also write M(So

i , S
o
i′) := M(So

i ) \M(So
i′)
◦ for the region enclosed by So

i
and So

i′ , i > i′.
We note that any consecutive So

i and So
i+1 are necessarily bound-

ary components of a single piece Uk,l ⊂ M(So
i+1, S

o
i ). This is seen as

follows. Let Uk,l(So
i+1) be the only piece in M(So

i+1) having So
i+1 as a

boundary component, and assume that So
i is not a boundary compo-

nent of Uk,l(So
i+1). Then Uk,l(So

i+1) is disjoint from M(So
i ) (otherwise

Uk,l(So
k,l) ⊂ M(So

i ) and therefore So
i+1 ≪ So

i ), and because o ∈ M(So
i )

we conclude that o /∈ Uk,l(So
i+1). Now, if a boundary component S of

Uk,l(So
k,l) other than So

i+1 is in N o, then it must be So
i ≪ S ≪ So

i+1,
which is impossible. Thus o /∈M(S) for any boundary component S of
Uk,l(So

i+1) other than So
i+1. Hence we can write

M(So
i+1) = Uk,l(S

o
i+1)

⋃[ ⋃

S∈({∂Uk,l(So
i+1)}\S

o
i+1)

M(S)

]
,

to conclude that o /∈M(So
i+1), which is a contradiction.

A representation of an annuli decomposition can be seen in Figure 1.
The figure shows also the tree induced by the order ≪.

2.4. Collapse with bounded diameter and curvature.

2.4.1. The Gromov–Hausdorff distance and a relevant exam-
ple. The Gromov–Hausdorff distance (GH-distance) [24] between two
compact metric spaces (X, dX ) and (Y, dY ) is defined as the infimum of
the δ > 0 such that there exists, on the disjoint union X / Y , a metric
dX)Y extending dX and dY such that

(5) Y ⊂ TdX"Y
(X, δ) and X ⊂ TdX"Y

(Y, δ),

where TdX"Y
(X, δ) and TdX"Y

(Y, δ) are the dX)Y -metric neighborhoods
of X and Y and radius δ, respectively.

We introduce now some terminology to be used during the rest of
the article. We will say that a sequence of compact manifolds (Mi, gi)
metrically collapses to a space (X, d) if it converges in the GH-topology
to (X, d) and the Hausdorff dimension of X is less than that of Mi

(which we assume is constant). If the GH-distance between (M,g) and
(X, d) is less than or equal to ϵ, then we say that (M,g) is ϵ-close to
(X, d). If the GH-distance between (M,g) and a point is less than or
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equal to ϵ, we say that (M,g) is ϵ-collapsed (for the distance of (M,g)
to a point, see [24]).

We present below an example where we estimate the distance between
two metric spaces that will be relevant to us in the proof of the Step C
inside the proof of the Proposition 3.1.

Example of a Gromov–Hausdorff distance estimation. Let I be
a compact interval in R of length |I| ≥ 1. Let h be a flat metric in T2

of diameter Γ. Provide X = T2 × I with the metric dX induced from
the Riemannian flat product-metric g = dx2 + h. Intuitively, if Γ is
small, then (X, dX ) should be close metrically to the interval I. More
precisely, it should be close to the metric space (Y, dY ) = (I, | |), where
dY (x1, x2) = |x1 − x2|. We show now the following upper and lower
bounds for the GH-distance between (X, dX ) and (Y, dY ) when Γ ≤ 1:

(6)
Γ

5
≤ distGH(X,Y ) ≤ Γ

2
.

• The upper bound. Points in T2 are denoted by t, points in I by x,
and thus points in X = T2×I by (t, x). Let t0 be a point in T2 such that
Bh(t0,Γ/2) = T2 (such point always exists). f ϵ > 0 define the distance
dϵX)Y as equal to dX and dY when restricted to X and Y , respectively,
and as dϵX)Y ((t, x), x

′) = dX((t, x), (t0, x′)) + ϵ for the distance between
(t, x) ∈ T2 × I and x′ ∈ I. Now (5) holds for δ(ϵ) = Γ/2 + 2ϵ and for
any ϵ > 0. Therefore, distGH(X,Y ) ≤ Γ

2 .
• The lower bound. Make distGH

(
X,Y )

)
= Γ/µ for a µ that we

will estimate as µ < 5. Let t1 and t2 be two points in T2 such that
disth(t1, t2) = Γ. Let also p1 = (t1, 0), p2 = (t2, 0), p3 = (t1,Γ), p4 =
(t2,Γ), forming an “square” inX; i.e., dX(p1, p2) = dX(p2, p4) = dX(p4, p3) =
dX(p3, p1) = Γ and dX(p1, p4) = dX(p2, p3) =

√
2Γ. By the definition of

the GH-distance, for every ϵ > 0 there is dϵX)Y extending dX and dY and
satisfying (5) with δ(ϵ) = Γ/µ+ ϵ. Therefore, there are points x1, x2, x3,
and x4 in I such that for every j = 1, 2, 3, 4 we have dϵX)Y (pj, xj) ≤ Γ

µ+ϵ.
From this and the triangle inequalities

dY (xj , xk) ≤ dϵX)Y (xj , pj) + dX(pj , pk) + dϵX)Y (pk, xk),

dX(pj, pk) ≤ dϵX)Y (xj , pj) + dY (xj , xk) + dϵX)Y (pk, xk),

we get, when (j, k) is not (1, 4) or (2, 3),

(7) |xj − xk| ≤ 2
Γ

µ
+ Γ+ 2ϵ, and Γ ≤ 2

Γ

µ
+ |xj − xk|+ 2ϵ,

while when (j, k) is (1, 4) or (2, 3) we get

(8)
√
2|xj − xk| ≤ 2

Γ

µ
+
√
2Γ+ 2ϵ, and

√
2Γ ≤ 2

Γ

µ
+ |xj − xk|+ 2ϵ.

We will use inequalities (7) and (8) in what follows. Suppose that x1 ≤
x3 (the case x1 ≥ x3 is symmetric). Then:
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x

xxx

Figure 2. The local models of collapse. From left to
right, models: I.a, I.b, II.a, II.b.

• If x4 ≤ x3 we have |x1 − x4| = ||x1 − x3|− |x3 − x4||, which using
(7) is less than or equal to 4Γ/µ+4ϵ, i.e. |x1− x4| ≤ 4Γ/µ+4ϵ. On the
other hand, from this and (8) we obtain

√
2Γ ≤ 6Γ/µ + 6ϵ, for every

ϵ > 0 and therefore µ < 5.
• If x4 ≥ x3, then we have two possibilities (i) x2 ≥ x1 or (ii) x2 ≤ x1.

(i) is symmetric to the case we have considered before under the change
x1 → x3, x3 → x1 and x4 → x2. We consider then (ii). In this case
we have |x2 − x4| = |x2 − x1| + |x1 − x3| + |x3 − x4|, which by (7) is
greater than or equal to 3Γ− 6Γ/µ− 6ϵ, i.e. |x2−x4| ≥ 3Γ− 6Γ/µ− 6ϵ.
From this and (7), again we obtain 4Γ/µ ≥ Γ− 4ϵ, for every ϵ > 0 and
therefore µ < 5. #

2.4.2. The local models of collapse and examples. Locally there
are only five types of models describing the metric limit of boundaryless
compact three-manifolds collapsing in volume with curvature and diam-
eter bounds. If (X, d) is a limit metric space and x ∈ X, then either x
is the only point of X or there is a neighborhood of x locally isometric
to one of the following four possibilities:

I.a an interval I = (−a, a), with −a < x = 0 < a, provided with
the standard metric d(x1, x2) = |x1 − x2|,

I.b an interval I = [0, a), with x = 0 < a, provided with the stan-
dard metric d(x1, x2) = |x1 − x2|,

II.a a disc D = B2(o, a), x = o, provided with a metric d induced
from a C1,β-Riemannian metric,

II.b a disc D = B2(o, a), x = o, provided with a metric d induced
from the quotient of a C1,β-Riemannian metric by the action of
Zq, q ≥ 1 by isometries leaving the origin o fixed.

The point x = 0 in case I.a and the point x = o in case II.b. will be
here called singular points and denoted by Sing(X). A manifold locally
of the form II.a or II.b will be called a C1,β orbifold.

That I.a, I.b, II.a, and II.b are the only possible models is an im-
portant consequence of the Cheeger–Gromov–Fukaya theory of collapse
under curvature bounds [10]. We comment on this in what follows. First,
the limit space is always of integer dimension and therefore if it not a
point it must be of dimension 1 or 2 as stated in Theorem 0.6 (and
the paragraph below it) of [10, p. 2]. That when the dimension is 2 the
models are of the forms II.a and II.b is the content of Proposition 11.5
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of [12, p. 186] (Proposition 11.5 is a Corollary to Theorem 11.1 [10, p.
184], which is a restatement of Theorem 0.6 in [10]). That when the
dimension is 1 the models are of the forms I.a and I.b follows from
Theorem 0.5 of [10, p.2] after Definition 0.4. Indeed by Theorem 0.5
and Definition 0.4 there is a neighborhood of x homeomorphic to the
quotient of Bm (with x = o and for some m) by the action of a Lie
subgroup of O(3). Thus, if the Hausdorff dimension is 1, then the space
must be of the type I.a or I.b, as these are the only possible quotients
of dimension 1. Note that it is excluded for the instance of the union of
three or more segments in a point (if we remove x = o from the quotient
the space must be still connected).

Below we are going to give four examples showing how each of the four
cases above can be realized. They are illustrative and do not play any
other role in the article. For this reason, the presentation is rather syn-
thetic. The examples give sequences of Riemannian manifolds (Mn, gn)
converging to a (X, d) as in I.a, I.b, II.a, and II.b (in this order).
We define first the sequence (Mn, gn) and give what is going to be the
limit space (X, d). After the definitions for every one of the cases I.a,
I.b, II.a, and II.b are made, we list the geometric properties of the
convergence process applying to each. The justifications are just com-
putational and, because they play no role in the article, are left to the
reader. Finally, let us mention that the examples show essentially all
that can occur locally in volume collapse with curvature and diameter
bounds besides collapse to a point (see Lemma 2.1).

We will use the following notation. The rotational group of R2 ∼ C

will be denoted by R. Obviously, U(1) ∼ R under the homomorphism
u ∈ U(1) → R(u) ∈ R, with R(u)z = uz for any z ∈ C. Also, for any
natural number q let Rq ∼ Zq be the subgroup of rotations generated
by R(e2πi/q). Finally, the group of rotations on the first factor R2 in
R2×R2 will be denoted by R1, and the group of rotations on the second
factor will be denoted by R2. Note that the set B2 × S1 ⊂ R2 × R2

and the set T2 ⊂ R2 × R2 are invariant under R1 × R2. In particular,
T2 × I ⊂ R2 × R2 × R is invariant under R1 ×R2.

Example I.a.

• (Mn, gn)—Let M̃ = T2 × I and provided with a smooth and R1 ×
R2-invariant Riemannian metric g̃. Let Gn ∼ Zn × Zn be the group
generated by the rotations R1(e2πi/n), R2(e2πi/n). Let Mn = M̃/Gn be
the quotient of M̃ by Gn, πn : M̃ → Mn the covering map, and gn the
projected metric on Mn, namely, π∗n(gn) = g̃.

• (X, d)—Let X = T2 × I/(R1 ×R2) with the induced quotient metric
d, and let fn : Mn → X be the projection.
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Example I.b.

• (Mn, gn)—Let M̃ = B2×S1 and provided with a smooth and R1×R2-
invariant Riemannian metric g̃. Let Gn ∼ Zn2 be the group generated
by the rotations R1(e2πi/n) × R2(e2πi/n

2
). Let Mn = M̃/Gn be the

quotient of M̃ by Gn, πn : M̃ → Mn the covering map, and gn the
projected metric on Mn, namely, π∗n(gn) = g̃.

• (X, d)—Let X = B2/(R1 × R2) with the induced quotient metric d,
and let fn : Mn → X be the projection.

Example II.a.

• (Mn, gn)—Let M̃ = B2 × S1 and provided with a smooth and R2-
invariant Riemannian metric g̃. Let Gn ∼ Zn be the subgroup of R2

generated by the rotations R2(e2πi/n). Let Mn = M̃/Gn be the quotient
of M̃ by Gn, πn : M̃ → Mn the covering map, and gn the projected
metric on Mn, namely, π∗n(gn) = g̃.

• (X, d)—Let X = B2, with the induced quotient metric d. Let fn :
Mn → X be the projection.

Example II.b.

• (Mn, gn)—Let M̃ = B2 × S1 provided with a smooth and R1 × R2-
invariant Riemannian metric g̃. Let 0 < p < q be two relatively prime
natural numbers, and let Gn ∼ Zqn be the subgroup of R1 × R2 gen-
erated by the rotations R1(e2πpi/q)×R2(e2πi/qn). Let Mn = M̃/Gn be
the quotient of M̃ by Gn, πn : M̃ → Mn the covering map, and gn the
projected metric on Mn, namely, π∗n(gn) = g̃.

• (X, d)—Let X = B2/Rq, with the induced quotient metric d. Let
fn : Mn → X be the projection.

With these definitions for the examples I.a, I.b, II.a, and II.b, it is
straightforward to check that:

1) Sing(X) = ∅ in cases I.a, II.a and Sing(X) = {o} in cases I.b
and II.b.

2) In every example, the sequence (Mn, gn) converges in the GH-
topology to (X, d). The group Gn of Deck transformations on M̃
converges to G = R1×R2 ∼ T2 in cases I.a and I.b, to G = R2 ∼
S1 in case II.a, and to G := Rq

1 × R2 ∼ Zq × S(1) in case II.b.
Moreover, X = M̃/G. Let π : M̃ → X be the projection. Then
CentrG(π−1(Sing(X))) = Rq

1, where Centr is the centralizer.
3) In every example, fn : Mn → X is a fibration and lengthgn(f

−1
n (x))

→ 0. Moreover, fn : Mn \ f−1n (Sing(X)) → X \ Sing(X) is a T2-
fiber bundle in cases I.a and I.b and a S1-fiber bundle in cases
II.a and II.b. Centr(Sing(X)) acts freely on f−1n (x) for any x ∈
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X \Sing(X) and f−1n (Sing(X)) ∼ f−1n (x)/Centr(π−1(Sing(X))).
#

2.4.3. Volume collapse of three-manifolds with boundary and
with curvature and diameter bounds—an statement. We discuss
now briefly what we will mean by three-manifolds with non-necessarily
smooth boundary. The reader should keep in mind that the notion is
just for the purpose of working later with some necessary generality,
with no intention whatsoever in developing a new concept, which, as a
matter of fact, would be here purposeless. Let M be a compact set on
an open manifold P . Then we say that M is a compact manifold with
non-necessarily smooth boundary (in short, manifold with NNSB) if M
is equal to the closure (in P ) of its interior (in P ). In this sense, the
boundary ∂M of M is defined as M minus the topological interior of
M (in P ), and the manifold’s interior M◦ := M \ ∂M therefore coin-
cides with the topological interior (in P ). Note that we do not assume
that M◦ is connected. A subset of M is a submanifold with NNSB if
it is a manifold with NNSB as a subset of P . Of course any compact
manifold with smooth boundary is a manifold with NNSB. If P car-
ries a Riemannian metric g, then we say that (M,g) is a Riemannian
manifold with NNSB. In this case, the Riemannian metric g induces a
metric d = dMg in every connected component of M◦. For the discussion
below, we do not need to extend d to a metric on M◦. The distance
from a point p ∈ M◦ to ∂M can be defined in several equivalent and
natural ways—for instance, d(p, ∂M) as the supremum of the radius
of the geodesic balls of center p, lying entirely in M◦. Then d(p, ∂M)
is realized by the g-length of a geodesic starting at p and ending at
∂M and whose interior lies in M◦. Define the tubular neighborhoods
Td(∂M, ϵ) := ∂M ∪ {p ∈M◦, d(p, ∂M) < ϵ}.

Definition 2. Let N0 : R+ ×R+ → R+ be a non-necessarily contin-
uous function. Then define M(N0) as the set of compact Riemannian
manifolds with NNSB (M,g), such that for any 1 > ϵ0 > 2ϵ1 > 0, the
minimum number of geodesic balls of radius ϵ1 covering M \Td(∂M, ϵ0)
is bounded above by N0(ϵ0, ϵ1).

Remark 2.1. The values of N0 outside the set {(ϵ0, ϵ1), 1 > ϵ0 >
2ϵ1 > 0} are of no relevance.

We would like to comment briefly about the reason for this definition.
Recall that given Λ0 > 0, D0 > 0 there is N0 : R+ → R+, depending
on them, such that for any compact boundaryless Riemannian three-
manifold with |Ric| ≤ Λ0, diamg(M) ≤ D0 the minimum number of
balls of radius ϵ covering M is bounded above by N0(ϵ) (this is due to
Gromov; see [24, p. 281]). Moreover, the existence of such N0 is equiv-
alent to the precompactness of the family of compact and boundaryless
Riemannian three-manifolds with |Ric| ≤ Λ0 and diamg(M) ≤ D0,
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as a set inside the family of compact metric spaces provided with the
GH-topology ([24, p. 280]). However, in the family of compact man-
ifolds with NNSB, and even those with smooth boundary, and with
|Ric| ≤ Λ0 and diamg(M) ≤ D0, one cannot guarantee the existence
of N0 : R+ → R+ nor the precompactness of such family. Consider, for
instance, the following example. For any n ≥ 2, let Vn = [1/n, 1]×S1 be
endowed with the flat metric dx2 + n2x2dϕ2, where ϕ is the coordinate
in the S1 factor (and recall that S1 has total length 2π). For any n, the
diameter of Vn is less than or equal to 2π + 2. On Mn = Vn × S1,
consider the flat product metric gn = dx2 + n2x2dϕ2 + (1/n)2dθ2,
where θ is the coordinate in the S1 factor defining Mn. Also, for any
n, diamgn(Mn, gn) ≤ 2π + 2 + 1/n < 10. Despite of this and despite
that the manifolds (Mn, gn) are flat, they do not collapse to a compact
metric space (as n→∞). Even more, we have that for any 1/2 > ϵ > 0
no pointed sequence (Ωn, gn, pn) of compact connected regions of Mn

with smooth boundary ∂Ωn, ∂Ωn ⊂ TdMn
gn

(∂Mn, ϵ) collapses to a com-

pact metric space. This occurs even when dMn
gn (pn, ∂Ωn) ≥ 1/4 (for

instance).
But any family M(N0) satisfies the following kind of precompactness.

Proposition 2.2. Let (Mi, gi) be a sequence in a family M(N0),
and on every connected component of M◦

i let di = dMi
gi . Then for every

1 > ϵ0 > 0 we have the following:

1. There are at most N0(ϵ0, ϵ0/3) connected components M̆◦
i of M◦

i
intersecting Mi \ Tdi(∂Mi, ϵ0).

2. For every sequence M̆◦
i of connected components of M◦

i intersect-
ing Mi \ Tdi(∂Mi, ϵ0), there is a subsequence (index again by “i”)
such that (M̆◦

i \ Tdi(∂Mi, ϵ0), di) converges in the GH-topology to
a compact metric space (X, d).

Remark 2.2. Note that distances in M̆◦
i \ Tdi(∂Mi, ϵ), which can be

a connected set or not, are with respect to di = dMi
gi .

Proof. Item 1. By definition, N0(ϵ0, ϵ0/3) bounds from above the min-
imum number of balls of radius ϵ0/3 covering Mi \ Tdi(∂Mi, ϵ0). But
given one such cover there must be at least one ball for every connected
component M̆◦

i intersecting Mi \ Tdi(∂Mi, ϵ0). Item 2. From Definition
2, the function N0(ϵ0, ϵ1) as a function of ϵ1 and with ϵ0 fixed as in the
hypothesis bounds from above the minimum number of di-balls of ra-
dius ϵ1 covering M̆◦

i \Tdi(∂Mi, ϵ0). The proposition follows from Lemma
1.9 in [24, p. 280]. q.e.d.

In the example below, we describe a nontrivial family of manifolds with
boundary that are of great interest to us and lie in a class M(N0).
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Example I. Let g be a fixed complete Riemannian metric in R3. Sup-
pose that Ricg ≥ 0 outside Bg(o, r0) and that |Ricg| ≤ Λ0/r2. Suppose,
too, that 0 < c0 < c1 are given and fixed. We claim that there are N0

and r1, both depending only on Λ0, r0, c0, c1, such that for any r̄ ≥ r1,
the Riemannian annuli (with NNSB) (Mr̄, gr̄),

Mr̄ := Ag[c0r̄, c1r̄] = Bgr̄(o, c1) \Bgr̄(o, c0), gr̄ :=
1

r̄2
g,

lie in M(N0). We prove the claim in the following.
(a) From Z-d Liu’s ball-covering property, more precisely, Remark 2

in [18, pg. 215]; take there S = Ag[c0r̄, c1r̄], C0 = c1/c0, and µ = c0/3,
we know that there are r1 and n0, both depending only on c0, c1, r0, Λ0,
such that for any r̄ > r1, n0 bounds from above the minimum number
of gr̄-balls (inside R3) with centers in Mr̄, of radii c0/8, and covering
Mr̄.

(b) Assume from now on and without loss of generality that r1 ≥
2r0/c0, and let r̄ > r1. In this situation, a standard argument due to
Gromov [13] using the volume comparison shows that, for any ϵ1 <
c0/16 and for any gr̄-ball with center in Mr̄ and of gr̄-radius c0/8, the
minimum number of gr̄-balls of gr̄-radii ϵ1 covering it is bounded above
by 8c30/ϵ

3
1.
2

From (a) and (b), we deduce that for any ϵ1 < c0/16 and r̄ > r1
the minimum number of gr̄-balls of gr̄-radii ϵ1 covering Mr̄ is bounded
by 8n0c30/ϵ

3
1. Now let ϵ0 and ϵ1 with 2ϵ1 < ϵ0 < 1 and ϵ1 < c0/16.

Then as
(
Mr̄ \ Tdr̄(∂Mr̄, ϵ0)

)
⊂Mr̄ (here dr̄ = dMr̄

gr ), it follows that the
minimum number of gr̄-balls of gr̄-radii ϵ1 covering Mr̄ \ Tdr̄(∂Mr̄, ϵ0) is
bounded by 8n0c30/ϵ

3
1. This shows the following. If r̄ > r1, then (Mr̄, gr̄)

belongs to M(N0), where, for 1 > ϵ0 > 2ϵ1 > 0 (cf. Remark 2.1),
N0(ϵ0, ϵ1) is defined as N0(ϵ0, ϵ1) = 8n0c30/ϵ

3
1 if ϵ1 < min{1/2, c0/8} and

as N0(ϵ0, ϵ1) = N0(ϵ0, c0/8) = 84n0 if ϵ1 ∈ [min{1/2, c0/8}, 1/2). #

Example II. For any D0, Λ0, and δ0, there is N0(D0,Λ0, δ0) such that
for any (M,g) Riemannian-manifold, with |Ricg| ≤ Λ0, and connected

2This is seen as follows. Let B(p, b) be a ball inside a manifold with Ric ≥ 0. Let
na be the maximum number of disjoint balls of radii a/3 with centers in B(o, p).
Let {B(qi, a/3), i = 1, . . . , na} be a set of disjoint balls with centers in B(p, b). Then
{B(qi, a), i = 1, . . . , na} covers B(p, b), and thus na bounds the minimum number of
balls with centers in B(p, b) and of radii a necessary to cover B(p, b). By the volume
comparison, we have V ol(B(qi, a/3)) ≥ (a/6(b + a))3V ol(B(qi, 2(b + a))) for all i.
Also for all i, we have B(qi, a/3) ⊂ B(p, b + a) and B(p, b + a) ⊂ B(qi, 2(b + a)).
Therefore, V ol(B(p, b+a)) ≥

∑
V ol(B(qi, a)) ≥ na(a/6(b+a))3V ol(B(p, b+a)) and

thus na ≤ (6(b+a)/a)3. Now in our situation we have p ∈ Mr̄, with r̄ > r1 ≥ 2r0/c0.
From the discussion earlier we deduce that the minimum number of balls of gr̄ radii
ϵ1 ≤ c0/16 covering Bgr̄ (p, c0/8) is less than or equal to (6(c0/8 + ϵ1)/ϵ1)3 ≤ 8c30/ϵ

3
1.

The condition r1 ≥ 2r0/c0 is used to make sure that the construction is inside a
region with Ric ≥ 0.
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compact region Ω ⊂M with smooth boundary having

diamg(Ω) ≤ D0 and dMg (∂Ω, ∂M) > δ0,

the connected manifold (with NNSB) TdMg (Ω, δ0) lies is M(N0,Λ0). The
proof is not difficult and is left to the reader. #

It is instructive to go back and recall the discussion before Propo-
sition 2.2. There we presented a sequence (Mn, gn) that, in light of
Proposition 2.2, did not belong to a single M(N0). Now, in the light
of Example II, the manifolds (Mn, gn) (for all n) cannot be extended
beyond their boundary to manifolds (M̄n, gn) with |Ricgn | ≤ Λ1 and

dM̄n
gn (Mn, ∂M̄n) ≥ δ0 > 0.
As a consequence of Example II we have:

Example III. Let R0 > 0 and Λ0 > 0 be given. Then there isN0(R0,Λ0)
such that any closure of a geodesic ball (see Section 2.1) of radius
r0 ≤ R0 inside a manifold (M,g) with |Ric| ≤ Λ0 lies in M(N0). To see
this, note that Bg(p, r0) = TdMg (Bg(p, r0/2), r0/2) and then use Exam-
ple II. #

We will denote by M(N0,Λ0) the set of Riemannian three-manifolds
(with NNSB) in the class M(N0) and with |Ric| ≤ Λ0. In Example I,
the manifolds (Mr̄, gr̄) lie in M(N0, c

−2
0 Λ0), where N0, c0, and Λ0 are

as in the example.

Definition 3. Let (M,g) be a compact manifold (with NNSB). Let
0 < ϵ < ϵ < 1. Then a compact connected region Ω (with NNSB) is
said to be an (ϵ, ϵ)-connected component of M if ∂Ω ⊂ TdMg (∂M, ϵ) \
TdMg (∂M, ϵ). The set of (ϵ, ϵ)-components of three-manifolds in a class

M(N0,Λ0) will be denoted by Mϵ
ϵ(N0,Λ0).

Thus when we write (Ω, g) ∈Mϵ
ϵ(N0,Λ0), we imply that (Ω, g) is the

(ϵ, ϵ)-connected component of an (M,g) ∈M(N0,Λ0).
A sequence (Mi, gi) is volume collapsing if V olgi(Mi) → 0. The fol-

lowing important lemma is essentially Proposition 1.5 in [4] (up to some
modifications3 ) and with some additional information from [10].

3Unfortunately, Proposition 1.5 in [4] is stated without proof. An argumentative
proof can be found in [3] (for the Lemma 1.4 p. 982, which is the equivalent to
Proposition 1.5 in [4]) but we were not able to check every claim in there, especially
concerning the existence of Ui (in the terminology of [3]) with ϵ/2 ≤ dist(∂Ui, ∂Ωi) ≤
ϵ. The problems have to do with the fact that a priori the sequence (Di, gi, xi) (in
the terminology of [4]) do not belong to any family M(N0), and this may cause some
inconveniences as indicated in the discussion before Proposition 2.2. It is essentially
to avoid these inconveniences that we included the hypothesis that the sequence
(Mi, gi) belongs a priori to some fixed family M(N0). We would like to thank Michael
Anderson for conversations on Propositions 1.4 and 1.5 in [4].
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Lemma 2.1. Let (Mi, gi) be a volume-collapsing sequence in a given
M(N0,Λ0) and such that for some pi ∈ Mi we have dMi

gi (pi, ∂Mi) ≥
Γ0 > 0. Then for every 0 < ϵ < ϵ < min{1,Γ0/2} there is a sequence
(Ωi, gi) of (ϵ, ϵ)-connected components of Mi, with pi ∈ Ωi, and a sub-
sequence of it (indexed again by “i”) converging in the GH-topology to
a space (X, d) of one of the following two forms:

D1. an interval ([0, x̄], | |), with Sing(X) = ∅ or Sing(X) = {x̄}, or,
D2. a C1,β-two-orbifold, with either Sing(X) = ∅ or Sing(X) =

{x̄1, . . . , x̄n} ⊂ X◦.

Moreover (for i ≥ i0), I1 and I2, below, hold.

I1. There are fibrations fi : Ωi → X, with asymptotically collapsing
fibers f−1i (x), such that,
• For D1: fi : Ωi \ f−1i (Sing(X)) → X \Sing(X) is a T2-fibre-
bundle and if Sing(X) ̸= ∅ then f−1i (x̄) ∼ T2/(S1×Zq), where
the quotient is by a free action.

• For D2: fi : Ωi \ f−1i (Sing(X))→ X \ Sing(X) is a S1-fibre-
bundle and if Sing(X) ̸= ∅ then f−1i (x̄j) ∼ S1/Zqj , where the
quotient is by a free action.

I2. There are finite coverings πi : Ω̃i → Ωi, such that:
• For D1: (Ω̃i, g̃i) converges in C1,β to a T2-symmetric Rie-
mannian manifold.

• For D2: (Ω̃i, g̃i) converges in C1,β to a S1-symmetric Rie-
mannian manifold.

In either case, for any x ∈ X \ Sing(X), π−1i (f−1i (x)) converges
in C1 to the T2 or S1 orbits.

The fibrations fi have one more property [9]: for any neighborhood W
of Sing(X), the map fi : f

−1
i (X\W )→ X\W is an almost-Riemannian

submersion; more precisely, we have

e−o(i) ≤ |fi∗(V )| ≤ eo(i), where o(i)
i→∞−−−→ 0,

and for any unit-norm vector V perpendicular to the fibers.

Remark 2.3. Note that the space (Ωi, gi) represents (Ωi, dΩi
gi ) (see

Sec. 2.1) rather than (Ωi, dMi
gi ). Compare this with item 2 in Proposition

2.2.

Once one assumes that the sequence (Mi, gi) is in M(N0,Λ0), the
proof of Lemma 2.1 reduces to pointing to the appropriate reference in
Fukaya’s work. Here we give an overview of why this is so. The proof
itself is postponed to the appendix.

We introduce first the following terminology. We say that two metric
spaces (Y, dY ) and (Z, dZ) are locally isometric under a homeomorphism
φ : Y → Z if for all y ∈ Y and φ(y) = z there are δ(y) and δ(z) such that
φ : (BdY (y, δ(y)), dY ) → (BdZ (z, δ(z)), dZ ) is an isometry. Of course,
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there are non-isometric metric spaces that are locally isometric.4 As a
matter of fact if (Ω, g) ⊂ (M,g) then (Ω◦, dΩg ) is locally isometric un-

der the identity homeomorphism to (Ω◦, dMg ), but they are not globally
isometric in general.

Suppose now that a sequence of compact boundaryless manifolds
(Mi, gi) with uniformly bounded curvature and diameter collapses to
a metric space (X, d), and suppose that pi → x. Let exp : TpiMi → Mi

be the exponential map, and let gi(pi) be the metric gi on TpiMi. Fi-
nally, let BTgi(pi)(pi, R0) be the gi(pi)-ball of radius R0 in TpiMi. There
is R0(Λ0) small enough, for which the map

exp : BTgi(pi)(pi, R0)→ Bgi(pi, R0)

is of maximal rank. Let g∗i be the pull-back metric. Then Fukaya’s tech-
nique to describe the space around x [10, Ch. 3], consists in working
with (BTg∗i

(pi, R1), g∗i ), with R1 ≤ R0 small enough, and making the

following observations5

1) One can find a subsequence of it converging to a Riemannian man-
ifold (BT, g∗) [10, p. 9].

2) For every i, the space (Bgi(pi, R1/2), gi) is isometric to the quotient
of the space (BTg∗i

(pi, R1/2), g∗i ) by an appropriate local group6

of isometries Gi and that Gi converges to a local group G [10, p.
9], that is locally isomorphic to a Lie group [10, Lemma 3.1].

3) (Bd(x,R1/2), d) is locally isometric to (BT (R1/2), g∗)/G, where
BT (R1/2) is the g∗-ball of radius R1/2 in BT (i.e., the limit of
BTg∗i

(pi, R1/2)) 7 .

Thus by item 3, to study locally the space (X, d) around x it is enough
to study the limit spaces (BT (R1/2), g∗)/G, and this is what is done in
[10]. What is important to us about this conclusion is that one can study
the collapse of manifolds with boundary as long as one works on a finite
number of balls at a definite distance away from the boundary. This is
essentially what is done in the proof of Lemma 2.1 in the appendix and
where the condition (Mi, gi) ∈M(N0,Λ0) is used.

2.4.4. A relevant application of Lemma 2.1. We describe now a
relevant application of Lemma 2.1 that will be of use to us in Propo-
sition 3.1. We describe it first in rough terms and then in a precise
statement. Consider any solid torus with curvature bounded above by
Λ0 (fixed) and that is metrically close to an interval I of length between
∞ ≥ L0 > |I| ≥ 1 > 0 (with L0 fixed) and with boundary metri-
cally close to a point. Then any curve C in its boundary that is not a

4For instance, compare the set {ϕ ∈ S
1, 0 < ϕ < 3π/4} with the restriction of the

standard metric in S
1 and ((0, 3π/4), | |).

5We do not comment here about some technical issues on smoothing.
6See [10] and ref. therein.
7This is easy to check and is left to the reader.



334 M. REIRIS

contractible to a point (from now on simply “contractible”) as a curve
in the boundary but that is contractible as a curve in the solid torus
must have length greater or equal to some l0(Λ0, L0) > 0. A proof of
this phenomenon can be given along the following lines. Suppose that a
curve C in the boundary of the solid torus Ω that is not a contractible
curve as a curve in ∂Ω but is contractible as a curve in Ω has very
small length. Then one can “unwrap” Ω—namely, take a non-collapsed
cover Ω̃, which is also a solid torus. In particular, ∂Ω is covered by a
non-collapsed two-torus ∂Ω̃. But then the closed curve C , which is con-
tractible in Ω, lifts to a closed, equal length and non-contractible curve
C̃ in ∂Ω̃. But there are no non-contractible curves C̃ in ∂Ω̃ of very
small length. This idea is made rigorous in the proof of Proposition 2.3.
This behavior is explicit in Example I.b, as we explain in what follows.
In that example the Riemannian solid tori (Mn, gn) are collapsing to a
segment of length 1. No matter the value of n, consider the C0 = πn(C̃0)
where C̃0 = S1 × {1} ⊂ B2 × S1. The gn-length of C0 is equal to the
length of C̃0 and therefore equal to 2π. Moreover, any curve C in ∂Mn

that is non-contractible as a curve in ∂Mn but that is contractible as a
curve in Mn has length greater than that of C0—i.e., 2π. In other words,
no matter the value of n, there are no such curves having a small length.

We give a statement of what we described above in Proposition 2.3.
The statement is a bit more general than what was explained before, as
we do not make hypothesis on the boundary of the solid tori. For this
reason, too, it is more general than what we will need in this article, but
it can be useful in other investigations. The proof is given in all detail
partly to exemplify how the techniques apply.

Proposition 2.3. For any Λ0, δ0 < 1/2, and L0 there is ℓ0 > 0 such
that for any sequence (Ωi, gi) of solid tori inside a volume-collapsing
sequence of Riemannian manifolds (Mi, gi) with |Ricgi | ≤ Λ0 and having

Q1. radgi(Ωi) ≥ 1, dMi
gi (∂Ωi, ∂Mi) ≥ δ0 > 0, and which is

Q2. metrically collapsing to an interval (I, | |), and
Q3. posesses a sequence of closed curves Ci ⊂ ∂Ωi non-contractible

in ∂Ωi but contractible in Ωi with lengthgi(Ci) ≤ ℓ0,

we have |I| ≥ L0.

Remark 2.4. The hypothesis that the sequence (Mi, gi) is volume
collapsing can be seen to be unnecessary.

Proof. For the proof, it is worth to keep reference to Figure 3. We will
argue by contradiction. Suppose that there is Λ0, δ0 < 1/2, and L0 such
that for every m = 1, 2, 3, . . . there are sequences (in “i”) (Ωm,i, gm,i) ⊂
(Mm,i, gm,i), where for every m, (Mm,i, gm,i) is a volume-0collapsing
sequence of Riemannian manifolds with |Ricgm,i | ≤ Λ0, such that

Q̄1. radgm,i(Ωm,i) ≥ 1, d
Mm,i
gm,i (∂Ωm,i, ∂Mm,i) ≥ δ0 > 0, and which is
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Q̄2. metrically collapsing to an interval (Im, | |), with L0 ≥ |Im|, and
which

Q̄3. posesses a sequence of closed curves Cm,i ⊂ ∂Ωm,i non-contractible
in ∂Ωm,i but contractible in Ωm,i and of lengthgm,i(Cm,i) ≤ 1/m.

Using that every sequence (in “i”) (Mm,i, gm,i) is volume collapsing and
using Q̄2, one can select for every m an i(m) such that

V olgm,i(m)
(Mm,i(m)) ≤ 1/m, and distGH(Ωm,i(m), Im) ≤ 1/m.

In particular, the sequence (in “m”) (Mm,i(m), gm,i(m)) is volume col-
lapsing. Also, as we have radgm,i(m)

(Ωm,i(m)) ≥ 1 and because of Q̄2,

then we have L0 ≥ |Im| ≥ 1 for every m.8 Therefore, there is a
subsequence of (Ωm,i(m), gm,i(m)) (indexed again by “m”) metrically
collapsing to an interval I ′ with L0 ≥ |I ′| ≥ 1. We continue work-
ing with this subsequence in what follows. This implies, in particular,
that diamgm,i(m)

(Ωm,i(m)) ≤ D0 for some D0 and for all m.9 Finally,

note (to be used below) that from Q̄3 there is, for every m, a curve
Cm,i(m) ⊂ ∂Ωm,i(m) non-contractible in ∂Ωm,i(m) but contractible in
Ωm,i(m) and of lengthgi(m)

(Cm,i(m)) ≤ 1/m.

By Example II, if we let M ′
m = Tdm(Ωm,i(m), δ0) with dm = d

Mm,i(m)
gm,i(i) ,

then (M ′
m, gm,i(m)) lies in M(N0,Λ0) for some N0(D0,Λ0, δ0). On the

other hand, as M ′
m ⊂ Mm,i(m), then (M ′

m, gm,i(m)) is also a volume-
collapsing sequence. Hence, by Lemma 2.1, one can find a sequence
of (δ0/4, δ0/2)-connected components of M ′

m containing Ωm,i(m), to be

denoted by Ω̂m, and having a subsequence (indexed again by “m”) met-
rically collapsing to an interval Î containing I ′. We continue using this
subsequence in what follows. For the sake of concreteness, assume that
Î is the interval [0, |Î |].

Consider the fibrations fm : Ω̂m → Î as is explained in Lemma
2.1. As m → ∞, the fibers f−1m (x) collapse to a point and so does
∂Ω̂m = f−1m (0) to the point 0 in Î. Observe that the right point of I ′

must be the right point of Î—that is, |Î|—and therefore it is a singular
point, namely, Sing(Î) = {|Î |}. We observe, too, that from the very

definition of M ′
m we have, for every q ∈ ∂Ωm,i(m), d

Ω̂m
gm,i(m)

(q, ∂Ω̂m) <

δ0 < 1/2.10 It follows from this that for m ≥ m0 with m0 big enough

8In general, if (Xm, dXm

GH
−−→ (X, dX) and dXm(xm, x′

m) ≥ Γ for all m, then there
are x and x′ in X with dX(x, x′) ≥ Γ (use the definition of GH-convergence). On the
other hand, if radgm,i(m)(Ωm,i(m)) ≥ 1, then there are xm and x′

m in Ωm,i(m) such

that d
Ωm,i(m)
gm,i(m)

(xm, x′

m) ≥ 1).
9In general, if (Xm, dm)

GH
−−→ (X, d), then there is D0 such that diamdXm

(Xm) ≤
D0 for all m (use the definition of GH-convergence).

10Note for this that for any q ∈ ∂Ωm,i(m) we must have Bgm,i(m) (q, δ0)∩∂Ω̂m ̸= ∅,

because Ω̂m is a (δ0/4.δ0/2)-c.c.
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(i) ∂Ωm,i(m) ⊂ f−1m ([0, 1/2]), (ii) f−1m (1/2) lies in the interior of Ωm,i(m),
and (iii) f−1m (0) lies in the exterior of Ωm,i(m). In this way, ∂Ωm,i(m)

separates f−1m ([0, 1/2]), which is diffeomorphic to T2 × [0, 1/2], into
two connected components. This implies11 that ∂Ωm,i(m) is isotopic to
f−1m (x) for any x ∈ [0, 1/2]. In particular, if Cm,i(m) is non-contractible
in ∂Ωm,i(m), then it is also non-contractible in f−1m ([0, 1/2]). Moreover,
by Lemma 2.1 there is a subsequence (indexed again by “m”) and cov-

erings πm : ˜̂Ωm → Ω̂m such that ( ˜̂Ωm, g̃m,i(m)) converges in C1,β to a
T2-symmetric metric on B2 × S1 and (π−1m (f−1m ([0, 1/2])), g̃m,i(m)) con-

verges in C1,β to a T2-symmetric metric on T2 × I. For this reason,
there are m1 and ℓ1, such that for any m ≥ m1 any non-contractible
closed curve in (π−1m (f−1m ([0, 1/2])), g̃m,i(m)) has length greater or equal
to ℓ1. But for every m, the curve Cm,i(m) is closed and contractible in

Ωm,i(m) and thus contractible also in ˜̂Ωm. Therefore, its lift C̃m,i(m) to

π−1m (f−1m [0, 1/2])) ⊂ ˜̂Ωm is also closed and has the same length, which, as
was observed above, is less than or equal to 1/m. If m ≥ max{m1, 2/ℓ1},
then lengthgi(m)

(Cm,i(m)) ≤ ℓ1/2, which is not possible. q.e.d.

2.5. A special annuli decomposition. The results of the previous
section allow us to show the existence of an annuli decomposition with
special properties. Again for every k we define the scaled metric gk =
1

102k
g. Therefore, Ag(10n1+k, 10n2+k) = Agk(10

n1 , 10n2).

Proposition 2.4. Let g be a complete metric in R3 with Ric ≥ 0
outside a compact set, quadratic curvature decay, and less than cubic-
volume growth. Then there is an annuli decomposition U with the fol-
lowing properties:

For every ϵ > 0 there is k(ϵ) such that for any k ≥ k(ϵ) every piece
(Uk,l, gk) is ϵ-close in the GH-metric to a space Xk,l of one of the fol-
lowing two forms:

D̃1. an interval, in which case Uk,l is either diffeomorphic to T2 × I

or a solid torus B2 × S1, or
D̃2. a two-orbifold, in which case Uk,l is diffeomorphic to a Seifert

manifold with at least one boundary component.

There are fibrations fk,l : Uk,l → Xk,l, such that for any k ≥ k(ϵ) the
fibers f−1k,l (x), which are diffeomorphic either to T2 or S1, are ϵ-collapsed.
Moreover

Ĩ1. In case D̃1, either Sing(Xk,l) is empty or is one of the extreme
points of the interval. In addition, for any non-singular point x,

11This is a simple exercise in topology; use Alexander’s theorem in [1] for two-tori
in S

3.
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Figure 3. A representation of the argument given in the
proof of Proposition 2.3. The little curve in the cover
manifold represents the lift C̃m,i(m) of Cm,i(m). If m ≥
max{m1, 2ℓ1}, the length of C̃m,i(m) would be too small
to be non-contractible in π−1m (f−1m ([0, 1/2])).

the fiber f−1k,l (x) is diffeomorphic to T2 and if x is a singular point

then f−1k,l (x) is diffeomorphic to S1.

Ĩ2. In case D̃2, the fibers f−1k,l (x), which are all diffeomorphic to S1,
are the fibers of the Seifert-fibration.

For the proof, we will need the notion of “a cut of (R3, g) along the
annulus Agk(10

−1, 1),” which we now explain. We say that (given k)
a set {Sk,j, j = 1, . . . , j(k)} of embedded two-manifolds is a cut along
Agk(10

−1, 1) iff

(Cut1) Sk,j ⊂ Agk(10
−1, 1) for all j = 1, . . . , j(k); and

(Cut2) every curve α : [0, 1] → R3 with α(0) ∈ Bgk(o, 10
−1) and

α(1) ∈
(
R3 \ Bgk(o, 1)

)
intersects at least one of the Sk,j’s;

and
(Cut3) the property (Cut2) does not hold if one deletes one of the

Sk,j’s from the set.

Observe that if a set of manifolds {Sk,j, j = 1, . . . , j(k)} satisfy (Cut1)
and (Cut2), then one can remove (if necessary) some elements of the
set to satisfy also (Cut3). Note, too, that if {Sk,j, j = 1, . . . , j(k)} is a
cut, then the connected component Sk of R3 \ (∪jSk,j) containing the
origin o has exactly the manifolds Sk,j, j = 1, . . . , j(k) as its boundary
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components. Moreover,

Bgk(o, 10
−1) ⊂ S

◦
k and Sk ⊂ Bgk(o, 1).

We move now to the proof of Proposition 2.4.

Proof of Proposition 2.4. For the proof, it may be worth to keep
in mind Figure 1. As explained in the Example I in Section 2.4.3, the
spaces (Agk [10

−2, 104], gk) lie in M(N0, 102Λ0) for some k-independent

N0. Moreover, for any p ∈ Agk [1, 10] we have that d
R3

gk (p, ∂Agk [10
−2, 104])

> 1/2. Granted these two facts, we can use then Lemma 2.1 to obtain
with no difficulty the following:

There is k0 > 0 and a set {Ũk,l, l = 1, . . . , l(k); k = k0, k0 + 2, . . .} of
(for each k) (10−2/2, 10−2)-connected components of (Agk [10

−2, 104], gk)
with the following properties:

1) {Ũk,l, l = 1, . . . , l(k)} covers Agk [10
−1, 103] for every k = k0, k0 +

2, . . ..
2) There are intervals or two-orbifolds, to be denoted by X̃k,l, and

for every m = 1, 2, 3, . . . there is km, such that if k ≥ km, then
(Ũk,l, gk) is 1/m-close in the GH-metric to X̃k,l.

3) There are fibrations f̃k,l : Ũk,l → X̃k,l, with the properties Ĩ1 and

Ĩ2, such that if k ≥ km, their fibers are 1/m-collapsed.

It is important that the fibrations f̃k,l : Ũk,l → X̃k,l can be chosen in
such a way that (i) if Ũk,l and Ũk′,l′ overlap and have fibers of the same
dimension (namely, both have fibers of dimension 1 or both have fibers
of dimension 2), then the foliations of fibers coincide on the overlap,
and (ii) if 1 has fibers of dimension one and the other of dimension 2,
then fibers of dimension 1 are included in fibers of dimension 2. For this
the reader can consult the geometric construction of the fibrations in
[9] and [10].

Now, the manifolds Uk,l of the desired annuli decomposition will be
defined below as appropriate submanifolds of the Ũk,l. Once this is per-
formed, the desired fibrations fk,l : Uk,l → Xk,l are defined by the
restrictions fk,l := f̃k,l|Uk,l

: Uk,l → Xk,l := f̃k,l(Uk,l), where here Ũk,l

is the piece containing Uk,l and f̃k,l : Ũk,l → X̃k,l its fibration. We now
explain how the regions Uk,l are constructed.

Fix a value of k in {k0, k0 + 2, . . .}. Then on those X̃k,l that are
intervals select points x̃k,l,j and on those X̃k,l that are a two-orbifolds

select disjoint closed curves C̃k,j,i, in such a way that the set of tori

{Sk,l,j} := {f̃−1k,l (x̃k,l,j), f̃
−1
k,l,j(C̃k,j,i), all l, j} is a “cut of R3 along the

annulus Agk(10
−1, 1),” that is, satisfying (Cut1)-(Cut3).

Thus for every k in {k0, k0 +2, . . .} there is a cut {Sk,l,j}, and associ-
ated to it is the connected set Sk as defined before the start of the proof.
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Then for every k in {k0, k0+2, . . .} let Uk be the set of connected compo-
nents of Sk+2 \S ◦

k . Every piece in Uk+2 shares a boundary component
with a piece in Uk, but not necessarily vice versa.

For every k = k0, k0 + 2, . . . let U−k be the set formed by those pieces
of Uk that do not share a boundary component with a piece of Uk+2

and define U+
k = Uk \ U−k . Having done this, define for every k the set

of pieces Uk,l (that we are looking for) as the connected components of
the region

( ⋃

U+
k,l∈U

+
k

U+
k,l

)⋃( ⋃

U−

k+2,l∈U
−

k+2

U−k+2,l

)
.

The reader can check directly that, with this definition of the set {Uk,l},
items 1–5 of the definition of annuli decomposition are readily satisfied.
Every Uk,l lies inside a unique Ũk,l and the fibrations fk,l are defined as
was explained earlier. q.e.d.

3. Proof of Theorem 1.1

We will work in this section with the annuli decomposition defined
in the previous section. We already defined in Section 2.3 the set N of
boundary components of U , which we will denote here generically by T 2

(instead of S because they are tori). We also defined the subclass N o as
those tori T 2 in N for which o ∈ M(T 2) and observed that they were
linearly ordered, i.e., N o = {T 2o

0 , T 2o
1 , . . .}, with T 2o

i ≪ T 2o
i′ if i < i′.

For later convenience, we further divide N \ N o into two subclasses
denoted by N ! and N ♦; N ! (resp. N ♦) is defined as the set of tori
in N \ N o for which M(T 2) is a solid torus (resp. not a solid torus).
Tori in N ! (resp. N ♦) will be denoted as T 2! (resp. T 2♦). For every
T 2 in N there is a unique piece Uk,l (including the possibility of Uk0−2)
such that T 2 ∈ Uk,l and Uk,l ⊂M(T 2). In this way, the indexes k, l are
univocally defined and we can write k(T 2), l(T 2). We will continue using
the notation gk = g/102k ; in particular, we will use gk(T 2).

The following proposition is crucial for the proof of the Theorem
1.1. Observe that the statement is suitable to be used in an iterative
argument, as will be the case when we use it in the proof of Theorem
1.1.

Proposition 3.1. There exits ϵ∗, ℓ∗, k∗ such that if for a T 2!
1 ∈ N !

with k(T 2!
1 ) ≥ k∗, we have that

H1. (Uk(T 2!
1 ),l(T 2!

1 ), gk(T 2!
1 )) is ϵ∗-close in the GH-metric to an inter-

val and
H2. there is a curve C1 ⊂ T 2!

1 non-contractible in T 2!
1 but con-

tractible in M(T 2!
1 ) such that lengthg

k(T2!
1 )

(C1) ≤ ℓ∗,
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then Uk(T 2!
1 ),l(T 2!

1 ) is not the only Uk,l-piece of M(T 2!
1;m) and, if we denote

by T 2!
2 the second boundary component of Uk(T 2!

1 ),l(T 2!
1 ), we have

C1. (Uk(T 2!
2 ),l(T 2!

2 ), gk(T 2!
2 )) is 2ϵ

∗/3-close in the GH-metric to an in-

terval and
C2. there is a curve C2 ⊂ T 2!

2 non-contractible in T 2!
2 but con-

tractible in M(T 2!
2 ) such that lengthg

k(T2!
2 )

(C2) ≤ 2ℓ∗/3.

Proof. By contradiction, assume that for every ϵ∗m = 1/m, ℓ∗m = 1/m
and k∗m = m, m = 1, 2, 3, . . ., there is T 2!

1;m ∈ N ! with k(T 2!
1;m) ≥ k∗m

such that

H̄1. (Uk(T 2!
1;m),l(T 2!

1;m), gk(T 2!
1;m)) is ϵ∗m-close in the GH-metric to an in-

terval and
H̄2. there is a curve C1;m ⊂ T 2!

1;m non-contractible in T 2!
1;m but con-

tractible in M(T 2!
1;m) such that lengthg

k(T2!
1;m)

(C1;m) ≤ ℓ∗m,

but that, if it is not that Uk(T 2!
1;m),l(T 2!

1;m) = M(T 2!
1;m), then, after denoting

by T 2!
2;m to the second boundary component of Uk(T 2!

1;m),l(T 2!
1;m), one of the

following two assertions does not hold:

C̄1. (Uk(T 2!
2;m),l(T 2!

2;m), gk(T 2!
2;m)) is 2ϵ∗m/3-close in the GH-metric to an

interval, or
C̄2. there is a curve C2;m ⊂ T 2!

2;m non-contractible in T 2!
2;m but con-

tractible in M(T 2!
2;m) such that lengthg

k(T2!
2;m)

(C2;m) ≤ 2ℓ∗m/3.

We will show that this leads to an impossibility. Such impossibility will
come directly as the result of proving the following three steps.

• Step A. Let T 2!
1;m be a sequence satisfying H̄1 and H̄2. Then

radg
k(T2!

1,m)
(M(T 2!

1;m))
m→∞−−−−→∞.

StepA shows that there ism1 such that for everym ≥ m1, Uk(T 2!
1;m),l(T 2!

1;m)

is not the only piece of M(T 2!
1;m) (because if so, then, by item 1 of Def-

inition 1, radgk(T 2!
1;m)(M(T 2!

1;m)) ≤ 103). The statement of Step B below

assumes m ≥ m1.

• Step B. (m ≥ m1). Let T
2!
2;m be the second component of the piece

Uk(T 2!
1;m),l(T 2!

1;m). Then there is a covering sequence to a subsequence of

(Uk(T 2!
1;m),l(T 2!

1;m) ∪ Uk(T 2!
2;m),l(T 2!

2;m), gk(T 2!
1;m)),
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converging in C1,β to a flat T2-symmetric metric product on T2 × I1,2
for some interval I1,2. That is, the limit metric on T2 × I1,2 is of the
form dx2 + h̃0 with h̃0 an (x-independent) T2-symmetric metric on T2.

• Step C. There is m2 ≥ m1 such that for all m ≥ m2 and m in the
subsequence of Step B, then C̄1 and C̄2 hold.

From now until the end of the proof of the proposition and to simplify
notation, we let

U1;m = Uk(T 2!
1;m),l(T 2!

1;m), M1;m = M(T 2!
1;m),

g1;m = gk(T 2!
1;m), k1;m = k(T 2!

1;m).

Proof of Step A. Assume on the contrary that radg1;m(M1;m) ≤ R0.
Then it is simple to see12 that M1;m must be a subset of an annulus
A(10k1;m−1, 10k1;m+k•) for some k• > 0 independent of m. On the other
hand radg1;m(M1;m) ≥ 102 − 10−1 > 90 (because of item 2 of Definition
1 applied to U1;m). Under these hypothesis, we obtain that

1) (using H̄1) a subsequence of the sequence of solid tori (M1;m, g1;m)
(indexed still by “m”) metrically collapses to a compact interval13

I of length |I| greater or equal to 90, and
2) (using H̄2) for every ℓ0 we have limm→∞ lengthg1;m(C1;m) ≤ ℓ0.

We can then apply Proposition 2.314 to conclude that |I| ≥ L0 for any
L0 and therefore that |I| = ∞, contradicting the compactness of the
interval I. #

We recount briefly the setup and terminology before we go into Step
B. Let T 2!

2;m be the second boundary component of U1;m, and let U2;m :=

Uk(T 2!
2;m),l(T 2!

2;m) be the Uk,l-piece, other than U1;m, having T 2!
2;m as a

boundary component. Of course, k2;m := k(T 2!
2;m) = k(T 2!

1;m) + 2 =
k1;m + 2. Following the same pattern of notation as before, we let

U1,2;m = U1;m ∪ U2;m, g2;m = gk(T 2!
2;m).

12For any p ∈ M1;m, dR
3

g1;m(p, o) is less than or equal to dR
3

g1;m(p, T 2!
1;m) +

diamg1;m(T 2!
1;m)+dR

3

g1;m(T 2!
1;m, o) which is less than or equal to R0+diamg1;m(T 2!

1;m)+1.

But the g1;m-diameter of T 2!
1;m tends to zero (by H̄1), and so we can assume that it

is less than or equal to some D0.
13It must converge to an interval and not a two-orbifold (the only two options)

because (M1;m, g1;m) contains (U1;m, g1;m), which by H̄1 converges to an interval.
14To apply Proposition 2.3, use as Mm in its statement the manifold Mm :=

T
dR

3
g1;m

(M1;m, 10−2). It is direct that (Mm, g1;m) is a volume-collapsing sequence.
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Proof of Step B. To this end first note that (U1,2;m, g1;m) collapses
metrically to an interval15 to be denoted by I1,2; (U1;m, g1;m) collapses to
I1 and (U2;m, g2;m) collapses to I2, and we have I1,2 = I1∪I2 and |I1,2| =
|I1| ∪ |I2|. Without loss of generality, we assume that T 2!

1;m collapses to
the left boundary point of the interval I1 (or, the same, of I1,2) as an
interval in R. Further, following Proposition 2.4 and Lemma 2.1 (see also
Proposition 4.1 in the appendix for a technical point on the explicit form
of the limit), there is a subsequence (indexed again by m) and a covering
sequence πm : Ũ1,2;m → U1,2;m such that

(9) (Ũ1,2;m, g̃1;m)
C1,β

−−−→ (T2 × I1,2, g̃1 = dx2 + h̃1),

where, for x ∈ I1,2, h̃1(x) := h̃1|T2×{x} is a T2-symmetric Riemannian

metric. Note that because the convergence (9) is in C1,β, the “path”
x → h̃1(x) is C1. Therefore, the second fundamental forms Θ̃1(x) :=
Θ̃1

∣∣
T2×{x} =

(
1
2∂xh̃

)∣∣
T2×{x} of the slices T2 × {x} define a continuous

“path” of T2-symmetric, symmetric two-tensors. Denote the mean cur-
vatures by θ̃1(x) := trh̃1(x)

Θ̃1(x). Moreover, also from Proposition 2.4

and Lemma 2.1, there are C1-fibrations fm : U1,2;m → I1,2 such that

(10) π−1m (f−1m (x))
C1

−−→ T
2 × {x}.

The C1 convergence here is not optimal for the argumentation below,
as we want to have control on the second fundamental forms of the
fibers. However, in the technical Proposition 4.2, which we prove in the
appendix, it is shown that in this situation fm can indeed be chosen to
achieve convergence in C2 in (10). We will assume that this is the case
from now on.

We want to prove that h̃1(x) = h̃0. This will follow directly from the
next two claims and the identity ∂xh̃1(x) = 2Θ̃1(x).

Claim 1: If θ̃1(x) = 0 at every slice of T2 × I1,2, then Θ̃1(x) = 0 at
every slice of T2 × I1,2.

Claim 2: θ̃1(x) = 0 at every slice of T2 × I1,2.

We prove first Claim 1. Let ϕm : T2 × I1,2 → Ũ1,2;m be a sequence of
diffeomorphisms such that ϕ∗m(g̃1;m) converges in C1,β to g̃1. Then we
can write16

(11) ϕ∗m(g̃1;m) = α2
mdx2 + h̃1;m(x),

15Again, this is so because (U1;m, g1;m), with U1;m ⊂ U1,2;m, collapses metrically
to an interval.

16If necessary, ϕm can be slightly modified to avoid cross terms, as in the metric
expression (11).
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where, as m → ∞, the functions αm : T2 × I → R+ converge in C1 to
the constant function one on T2× I1,2 and the metrics h̃1;m converge in
C1 to h̃1. Let Θ̃1;m(x) and θ̃1;m(x) be the second fundamental forms and
mean curvatures of the slices T2×{x}, as slices in (T2× I1,2,ϕ∗m(g̃1;m)).
Then

(12) ∂xθ̃1;m = −∆h̃1;m
αm +

(
|Θ̃1;m|2

h̃1;m
+Ricg̃1;m(n, n)

)
αm,

where∆h̃1;m
is the h̃1;m-Laplacian on the slices T2×{x} and n is the unit

normal field to the slices. Let ζ(x) be a C1 non-negative real function of
one variable with support in I1,2, and consider the volume measure on
T2×I1,2, given by dVm = dAh̃1;m

dx, where dAh̃1;m
is the area element of

h̃1;m on every slice. Multiplying (12) by ζdVm and integrating, we obtain
the following: for the integral of the left-hand side and after integration
by parts in the variable x,

(13) −
∫

T2×I1,2

(
(∂xζ)θ̃1;m + ζ2αm(θ̃1;m)2

)
dVm,

where we used ∂xdAh̃1;m
/dAh̃1;m

= αmθ̃m, and, for the integral of the

first term of the right-hand side exactly the value zero because ζ is
constant over every slice. As αm

m→∞−−−−→ 1 and θ̃1;m
m→∞−−−−→ θ̃1 (in C1 and

C0 resp. and all over T2 × I1,2), we conclude that if θ̃1 = 0, then (13)
goes to zero, and that this is so for any ζ. Therefore, the integral of the
second term in the right hand side of (12), namely,

∫

T2×I1,2

ζ
(
|Θ̃1;m|2

h̃1;m
+Ricg̃1;m(n, n)

)
αmdVm,

must go to zero independently of ζ. But Ricg̃1;m(n, n) ≥ 0 for every m,

and thus, in the limit, we must have
∫
ζ|Θ̃1|h̃0

dAh̃0
dx = 0 for every ζ.

Hence Θ̃1 = 0 as claimed.

We prove now Claim 2. We show first the impossibility of having,
for some x̄, θ̃1(x̄) < 0. After that, we prove the impossibility of having
θ̃1(x̄) > 0. To do so, we will appeal to the following standard fact. Fact
1: Let S ⊂ M be a hypersurface on a manifold M with a unit-normal
field n. Let p ∈M and γ a geodesic segment starting at S in the direction
of n, ending at p and with dist(p, S) = length(γ). If θ|S ≤ θ0 < 0 and
Ric ≥ 0 all over a neighborhood of γ, then length(γ) ≤ 2/|θ0|.

• Suppose that, for some x̄, θ̃1(x̄) < 0. Then by (10) we conclude that
there is m2 ≥ m1 such that for every m ≥ m2 we have θ1;m|f−1

m (x̄) <

θ̃1(x̄)/2, where θm(x) is the mean curvature of f−1m (x)—namely, π∗m(θm) =
θ̃m. But note that the solid torus M(f−1m (x̄)) lies inside M(T 2!

1;m), which

is a region of non-negative Ricci, that ∂M(f−1m (x̄)) is f−1m (x̄), and finally
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by Step A that radg1;m(M(f−1m (x̄)))→∞. This easily contradicts Fact
1, as then for any m ≥ m2 there is a point pm and a geodesic segment in
M(f−1m (x̄)) starting at f−1m (x̄) and ending at pm of g1,m-length equal to
radg1;m(M(f−1m (x̄))) and therefore realizing the g1;m-distance from pm
to f−1m (x̄).

• Suppose that, for some x̄, θ̃1(x̄) > 0. Again by (10), we conclude
that there is m′

2 ≥ m1 such that for every m ≥ m′
2 we have θ1;m|f−1

m (x̄) >

θ̃1(x̄)/2. We will prove that there is a sequence of geodesic segments ηm,
for m ≥ m3, lying entirely inside R3 \ (M(T 2!

1;m)◦ ∪ Bg(o, r0)), starting

at T 2!
1;m and ending at a point pm and with

dR
3

g1;m(pm, T 2!
1;m) = lengthg1;m(ηm),

lengthg1;m(ηm)
m→∞−−−−→ ∞.

About this sequence we make two crucial remarks: first, the geodesic ηm
will lie entirely in the open set R3 \Bg(o, r0) where the Ricci curvature
is non-negative; second, the mean curvature at the initial point of ηm
in T 2!

1;m, and in the direction η′m (which is opposite to the one used to

define θ̃1(x)) is less than or equal to −θ̃1(x̄)/2 < 0. That θ̃1(x̄) cannot be
positive, contrary to what was assumed, will follow directly from these
two remarks and Fact 1. We move then to prove the existence of such
sequence.

Recall that a ray is an infinite-length geodesic diffeomorphic to [0,∞)
= R+ ∪ {0} minimizing the distance between any two of its points.
Let Rr0 be the set of rays ξ in (R3, g) starting at a base point b(ξ) in
∂Bg(o, r0) and lying entirely inside the closed set R3 \ Bg(o, r0). The
family Rr0 is easily seen to be non-empty and the union of the rays in
Rr0 to be a closed set in R3. Moreover, observe the following simple fact
about Rr0 to be used later. Fact 2: Consider a sequence γj of geodesic
segments lying entirely in R3 \Bg(o, r0), having one of its end points in
∂Bg(o, r0) and minimizing the distance between its two extreme points.
If lengthg(γj) → ∞, then there is a subsequence of γj converging (on
compact sets of R3) to a ray in Rr0 .

Let PL be the set of points in the rays of Rr0 lying at a g-distance L
from the base point of the ray to which they belong—more precisely,

PL = {p ∈ ξ ∈ Rr0/d
R3

g (p, b(ξ)) = L}.

Now, for every m there is Lm > 0 sufficiently big with the following
properties17 :

P1. PLm ⊂
(
R3 \M(T 2!

1;m)
)
and

17If M(T 2!
1;m) ⊂ Bgk1;m

(o, L̄m), then take Lm = mL̄m10k1;m .
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Figure 4. Representation of the construction in the
proof of Step B. In terms of length, it more economic to

go from p0 to tm using the path p0
byξ0−−−→ u0

by short curve−−−−−−−−−→
um

byγm−−−→ tm, rather than going from p0 to tm along γm.

P2. dR
3

g1;m(PLm , T
2!
1;m) ≥ m (note that the distance is with respect to

g1;m).

Let γm be a geodesic segment from a point tm in T 2!
1;m to a point pm

in PLm and realizing the g1;m-distance between the closed sets T 2!
1;m

and PLm of R3. Because of P1, such segment must lie entirely in R3 \
M(T 2!

1;m)◦, but it is a priori not evident that it will not intersect Bg(o, r0).
We show now that there is m3 ≥ m′

2 such that for every m ≥ m3,
γm∩Bg(o, r0) = ∅. With this information and P2, we can conclude that
ηm := γm is the sequence we claimed for and the claim 2 will be finished.
Suppose on the contrary that there is a subsequence (denoted again by
γm) such that γm∩Bg(o, r0) ̸= ∅. In this case, γm∩Bg(o, r0), as a closed
set in γm, has a point bm nearest to tm and a point sm nearest to pm.
Let γ̂m be the piece of γm enclosed between tm and bm. Obviously γ̂m
lies inside R3 \Bg(o, r0). Therefore, as commented above, the sequence
γ̂m has a subsequence (denoted again by γ̂m) converging to a ray ξ0 (on
compact sets of R3). Let u0 be a point in ξ0 at a g-distance 4r0 from
the base point b(ξ0) at ∂Bg(o, r0). Let um be a sequence of points in γ̂m
converging to u0. Then for every ϵ > 0 there is m(ϵ) such that for any
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m ≥ m(ϵ) we have

dR
3

g (u0, um) ≤ ϵ, and 4r0 − ϵ ≤ dR
3

g (um, bm) ≤ 4r0 + ϵ.

Let p0 be in ξ0 at a g-distance Lm from b(ξ0), which, by definition, is a
point in PLm . Then, if m ≥ m(ϵ), we can write

dR
3

g (PLm , T
2!
1;m) ≤ dR

3

g (p0, tm) ≤ dR
3

g (p0, u0) + dR
3

g (u0, um) + dR
3

g (um, tm)

≤ Lm − 4r0 + ϵ+ dR
3

g (um, tm).

On the other hand,

dR
3

g (Pm, T 2!
1;m) = dR

3

g (pm, tm) ≥ dR
3

g (pm, sm) + dR
3

g (bm, tm)

≥ Lm − 2r0 + dR
3

g (bm, tm) ≥ Lm − 2r0 + dR
3

g (um, tm),

where we used that dR
3

g (pm, sm) ≥ Lm−2r0, which is easily deduced from

the fact that, because pm ∈ PLm , we have dR
3

g (pm, ∂Bg(o, r0)) ≤ Lm.
The two equations before lead readily to the inequality 2r0 ≤ ϵ, which
is impossible if one choses for instance ϵ = r0. A representation of the
construction can be seen in Figure 4. This finishes the proof of Claim 2
and therefore of Step B. #

Proof of Step C. We work here with the subsequence of Step B, but
to simplify notation still use the subindex m. On U1,2;m define the C1

vector field Wm = ∇fm/|∇fm|2, and on Ũ1,2;m define the lifted function
f̃m = fm ◦ πm and the lifted vector field W̃m = ∇f̃m/|∇f̃m|2. Wm and
W̃m define flows ψm and ψ̃m on U1,2;m and Ũ1,2;m, respectively. Because
dfm(Wm) = 1 and df̃m(W̃m) = 1, the flows ψm and ψ̃m take fibers into
fibers; that is if x1, x2 ∈ I, then

ψm(x2 − x1,−) : f−1m (x1)→ f−1m (x2)

and
ψ̃m(x2 − x1,−) : f̃−1m (x1)→ f̃−1m (x2).

Fix x0 ∈ I1,2. Let χ̃m : T2 → f̃−1m (x0) be chosen (to be concrete) such

that as m → ∞ and as f̃−1m (x0)
C2

−−→ T2 × {x0}, χm converges in C2 to
the “identity” diffeomorphism: t ∈ T2 → (t, x0) ∈ T2 × I1,2. With the
help of χ̃m and ψ̃m, one can define C2-diffeomorphisms

ϕ̃m : T2 × I1,2 → Ũ1,2;m, as ϕ̃m(t, x) = ψ̃m(x− x0, χ̃m(t)),

for which we have ϕ̃m(T2 × {x}) = f̃−1m (x) and dϕ̃m(∂x) = W̃m. More-
over, as W̃m is perpendicular to the fibers, we have the following form
of the pull-back metric:

ϕ̃∗mg̃1;m = α2
mdx2 + h̃1;m(x),

where αm and h̃1;m(x) (may be different from those in Step B, but
we name them the same) converge in C1 to the function identically
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one and h̃0, respectively. We inspect now the behavior of the length of
curves on fibers when we translate them along ∂x. Let C̃x1 be a curve
on T2 × {x1}, and let C̃x be the transported of C̃x1 by ∂x to T2 × {x}.
Then, as ∂xh̃m = 2α1,mΘ̃1;m, we obtain the direct estimate

(14) |∂xlengthh̃1;m(x)(C̃x)| ≤
(
supT2×{x} |Θ̃1;m|

)

2
lengthh̃1;m(x)(C̃x).

However, because of Step B, |Θ̃1;m|h̃1;m

m→∞−−−−→ 0 (uniformly on T2×I1,2)

and we deduce that for every 1 > ν > 0 there is m(ν) such that if
m ≥ m(ν) and x1, x2 ∈ I1,2, then

(1− ν)lengthh̃1;m(x1)
(C̃x1) ≤ lengthh̃1;m(x2)

(C̃x2)(15)

≤ (1 + ν)lengthh̃1;m(x1)
(C̃x1).

Now, from (15) and noting that the result of transporting a curve Cx1 ⊂
f−1m (x1) (closed or not) by Wm to a curve Cx2 ⊂ f−1m (x2) is the same
as the result of lifting Cx1 to an (equal length) curve C̃x1 ⊂ T2 × {x1}
by means of πm ◦ ϕ̃m, transporting it by ∂x to a curve C̃x2 , and then
pushing it down to an (equal length) curve Cx2 ⊂ f−1m (x2), we deduce
that if m ≥ m(ν) and x1, x2 ∈ I1,2, then

(1− ν)lengthh1;m(x1)(Cx1) ≤ lengthh1;m(x2)(Cx2)(16)

≤ (1 + ν)lengthh1;m(x1)(Cx1).

We are ready to prove that there is m2 such that if m ≥ m2 then C̄1
and C̄2 holds. We prove first C̄1 and then C̄2.

• First, since the h1;m(x)-diameters of the fibers f−1m (x), here denoted
by Γ1;m(x), are realized by the length of geodesic segments (inside the
fiber), then we obtain from (16)

(17) 1− ν ≤ Γ1;m(x1)

Γ1;m(x2)
≤ 1 + ν,

for any x1, x2 ∈ I1,2 and m ≥ m(ν). Second, in exactly the same way
that we proved (6) in the example of Section 2.4.1, one can prove the
following statement: Given Λ1 there are ν0 and Γ0 such that for any
Riemannian manifold (V, gV ) with |RicgV | ≤ Λ1 and with a T2-fibration
fV : V → IV (|IV | ≥ 1) for which

1− ν0 ≤
ΓV (x1)

ΓV (x2)
≤ 1 + ν0, x1, x2 ∈ IV , and sup

x∈IV
ΓV (x) ≤ Γ0,

where ΓV (x) = diam(f−1V (x)), we have

(18)
1

6
inf
x∈IV

ΓV (x) ≤ distGH(V, IV ) ≤
2

3
sup
x∈IV

ΓV (x).
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Now, take Λ1 = 100Λ0, where Λ0 is the coefficient that we assumed
in the quadratic curvature decay of g—that is, in |Ricg| ≤ Λ0/r2. Let
ν0 = ν0(Λ1) and Γ0 = Γ0(Λ1). Choose ν ≤ min{1/4, ν0} and m2 ≥ m(ν)
(as defined above) and sufficiently big that for any m ≥ m2 we have
supx∈I1,2 Γ1;m(x) ≤ Γ0. If as in H̄1, (U1;m, g1;m) is ϵ∗-close in the GH-

metric to (I1, | |), then by the first inequality of (18) (applied18 to
V = U1;m and gV = g1;m) and by (17), we have

(19) sup
x∈I2

Γ1;m(x) ≤ 6

1− ν
ϵ∗.

Hence by (19) and the second inequality of (18) (applied19 to V = U2;m

and gV = g2;m), and recalling that g2;m = 1
102 g1;m (implying Γ2;m(x) =

Γ1;m(x)/10), we obtain

distGH((U2;m, g2;m), (I2, | |)) ≤
2

3

1

10

6

(1− ν)
ϵ∗ ≤ 2

3
ϵ∗,

where the last inequality is because ν ≤ 1/4. This shows that C̄1 holds.

• Suppose, as in H̄2, that there is a closed C1;m ∈ T 2!
1;m for which

it is lengthg1;m(C1;m) ≤ ℓ∗m. Let x1 be the left point of the interval I1,
and let x2 be the left point of the interval I2. Then the curve C1;m

belongs to the fiber f−1m (x1). Let C2;m be the transport of C1;m by Wm

to f−1m (x2) = T 2!
2;m. By (15) we have

lengthg2;m(C2;m) =
1

10
lengthg1;m(C2;m) ≤ 4

3

1

10
lengthg1;m(C1;m) ≤ 2

3
ℓ∗.

This shows that C̄2 holds. #

q.e.d.

We are ready to prove Theorem 1.1.

Proof of Theorem 1.1. We will work with the annuli decomposition
of Section 2.5. The key to the proof of Theorem 1.1 is to show that
if i ≥ i0, for some i0 ≥ 0, then the manifold M(T 2o

i+1, T
2o
i ) is a IIB-

manifold. Once this is shown, the proof of Theorem 1.1 is as follows.
Let S2r̄ = ∂B3(o, r̄) be the “coordinate sphere” of radius r̄ in R3, and let
r̄ be large enough that S2r̄ ⊂ R3 \M(T 2o

i0 ). As
20

(20) R
3 \M(T 2o

i0 )
◦ =

∞⋃

i=i0

M(T 2o
i+1, T

2o
i ),

18Note that |Ricgk1;m | ≤ 100Λ0 on U1;m.
19Note that |Ricgk2;m | ≤ 100Λ0 on U2;m.
20Note from the properties of annuli decompositions that for any sequence T 2

j of

pairwise different tori in N we have dR
3

g (o, T 2
j ) → ∞. In particular, dR

3

g (o, T 2o
i ) → ∞

as i → ∞. This justifies equation (20).
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then we have

(21) S
2
r̄ ⊂

i=i1⋃

i=i0

M(T 2o
i+1, T

2o
i ),

for some i1 > i0 > 0. By Proposition 2.1, the right-hand side of (21) is a
IIB-manifold if every one of its summands is a IIB-manifold. Therefore,
S2r̄ bounds a ball in ∪i=i1

i=i0
M(T 2o

i+1, T
2o
i ) and so bounds a ball in R3 \ {o}

because R3 \ {o} contains ∪i=i1
i=i0

M(T 2o
i+1, T

2o
i ). But S2r̄ does not bound a

ball in R3 \ {o}, and we reach a contradiction.
We move then to prove that there is i0 ≥ 0 such that for any i ≥ i0,

M(T 2o
i+1, T

2o
i ) is a IIB-manifold.

Define i0 such that, for every piece Uk,l ⊂ R3 \ M(T 2o
i0 )

◦, we have
(ϵ∗, ℓ∗, k∗ below are as in Proposition 3.1)

1) k ≥ k∗,
2) (Uk,l, gk) is either ϵ∗-close in the GH-metric to either an interval

or a two-orbifold, and
3) if (Uk,l, gk) is ϵ∗-close to a two-orbifold then the gk-length of the

fibers C of the Seifert structure is less than or equal to ℓ∗, i.e.
lengthgk(C ) ≤ ℓ∗.

We will use such an i0 from now on and show that if i ≥ i0, then
M(T 2o

i+1, T
2o
i ) is a IIB-manifold. Some notation now. If a piece Uk,l in

R3 \M(T 2o
i0 )

◦ is ϵ∗-close to an interval, then we say that the piece is of
type I(ϵ∗), and if it is not and therefore is ϵ∗-close to a two-orbifold,
then we say that the piece is of type II(ϵ∗).

Let i ≥ i0:

• IfM(T 2o
i+1, T

2o
i ) does not contain a piece of type I(ϵ∗), then the man-

ifold M(T 2o
i+1, T

2o
i ) is a union of Seifert manifolds (with Seifert structures

coinciding at any intersection) and therefore a Seifert manifold with
two boundary components, T 2o

i+1 and T 2o
i . It follows that in this case

M(T 2o
i+1, T

2o
i ) is a IIB-manifold.

• If M(T 2o
i+1, T

2o
i ) contains a piece of type I(ϵ∗), then we can distin-

guish two cases, as follows.

(i) M(T 2o
i+1, T

2o
i ) is itself a piece of type I(ϵ∗) (in this case,

the only Uk,l-piece) and therefore diffeomorphic to T2 × I and thus a
IIB-manifold, or

(ii) M(T 2o
i+1, T

2o
i ) is not a piece of type I(ϵ∗), in which case the only

piece Uk,l ⊂M(T 2o
i+1, T

2o
i ) having T 2o

i+1 and T 2o
i as boundary components

(see Section 2.3) is of type II(ϵ∗) and has at least a third boundary
component.
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We discuss now case (ii) and show that M(T 2o
i+1, T

2o
i ) is also in this

case a IIB-manifold. Denote by Ui+1,i to the union of all the pieces Uk,l

in M(T 2o
i+1, T

2o
i ) of type II(ϵ∗), and by Ûi+1,i to the only connected

component of Ui+1,i containing T 2o
i+1 and T 2o

i . The Ûi+1,i is a union of
Seifert manifolds (with Seifert structure coinciding at any intersection)
and therefore a Seifert manifold itself. Let N̂i+1,i be the set of boundary

components of Ûi+1,i other than T 2o
i+1 and T 2o

i , and observe that any

torus T 2 in N̂i+1,i is ≪ than T 2o
i+1 but is not related in the order ≪ to

T 2o
i (otherwise it would be one of the T 2o

i ’s). Now, the tori T 2 in N̂i+1,i

are either of type T 2! or of type T 2♦—namely, either M(T 2) is a solid
torus or not (see beginning of Sec. 3). A T 2! in N̂i+1,i is the boundary of
a Uk,l-piece of type II(ϵ∗), and, because i ≥ i0 and the definition of i0,
the fibers {C } of the Seifert structure of such piece have gk(T 2!)-length

less than or equal to ℓ∗. In particular the fibers {C } on T 2! (which
as closed curves are non-contractible in T 2!) have gk(T 2!)-length less

than or equal to ℓ∗. Summarizing, we would have k(T 2!) ≥ k∗ (because
i ≥ i0) and:

H1’. (Uk(T 2!),l(T 2!), gk(T 2!)) is ϵ∗-close in the GH-metric to an inter-
val.

H2’. There is a curve C ⊂ T 2! (indeed, anyone of the {C }’s) non-
contractible in T 2! such that lengthg

k(T2!)
(C ) ≤ ℓ∗.

Therefore, and crucially, if the fibers {C } in T 2! are contractible inside
M(T 2!), then applying Proposition 3.1 iteratively we would obtain a
consecutive sequence of pieces of type I(ϵ∗) extending to infinity, i.e., a
T2 ×R+-end, which is not possible because then M(T 2!) would not be
compact21 . We conclude that for every T 2! in N̂i+1,i the fibers {C } are
non-contractible inside M(T 2!). This implies, as was comment at the

end of Section 2.2, that the Seifert structure of Ûi+1,i can be extended
to every M(T 2!). Hence the manifold

Ûi+1,i

⋃ [ ⋃

T 2!∈N̂i+1,i

M(T 2!)

]

is a Seifert manifold, has at least two boundary components, and is thus
a IIB-manifold. Finally, as was explained in Section 2.2, every manifold
M(T 2♦), with T 2♦ ∈ N̂i+1,i, is IIB. Therefore,

M(T 2o
i+1, T

2o
i ) = Ûi+1,i

⋃ [ ⋃

T 2!∈N̂i+1,i

M(T 2!)

] ⋃ [ ⋃

T 2♦∈N̂i+1,i

M(T 2♦)

]

21Alternatively, it would imply the existence of an embedded torus (a section
of such end) dividing R

3 into two unbounded connected components, which is not
possible.
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is a IIB-manifold by Proposition 2.1. This finishes the proof of Theorem
1.1. q.e.d.

4. Appendix

4.1. Remarks on manifolds and convergence. A three-manifold
M is Ck+1,β, k ≥ 1, 0 < β < 1 if it is a topological manifold provided
with an atlas with transition functions in Ck+1,β. A Riemannian three-
manifold (M,g) is Ck,β if M is Ck+1,β and the entries of g in every
coordinate system of the Ck+1,β atlas of M are Ck,β functions.

A sequence of Ck,β Riemannian manifolds (Mi, gi) converges in Ck,β

to a Ck,β Riemannian manifold (M,g) if there are Ck+1,β-diffeomoprhisms
ϕi : M → Mi such that the entries of ϕ∗i gi in every coordinate system
of the atlas of M converge in C1,β to the entries of g in the coordinate
system.

There are norms that we will use that do not depend on the coor-
dinates. In particular, on a Ck,β Riemannian manifold (M,g) one can
define the Ck′+1

g -norm, k′ ≤ k, of functions as usual as

∥f∥
Ck′+1

g
= sup

x∈M

( j=k′+1∑

j=0

|∇(j)f |(x)
)
,

where ∇(j) is the operator resulting from applying ∇ j-times. Note that
∇(j)f = ∇(j−1)df and that the Ck′+1

g norm of f involves only derivatives

of g up to order k′. In particular the space C2
g is well defined on a C1,β

Riemannian manifold. Moreover, one easily has the following property:
If (Mi, gi) converges in C1,β to (M,g) (via diffeomorphisms ϕi) and fi
is a sequence of functions in Mi, then there is i0 such that for any i ≥ i0
we have ∥ϕ∗i fi∥C2

g
≤ 2∥fi∥C2

gi
(here, ϕ∗i fi = fi ◦ ϕi).

4.2. Some technical propositions. The following theorem would be
standard if we were working in the smooth category. With low regularity
there are some points to check.

Proposition 4.1. Let (M,g) be a compact C1,β-Riemannian man-
ifold with boundary. Suppose that φ : T2 ×M → M is a continuous
and free action by isometries. Then there exists a C2,β-diffeomorphism
ϕ : M → T2 × I such that ϕ∗g = dx2 + h(x) where h(x) is a C1,β-path
of T2-symmetric, and therefore flat metrics in T2.

Proof. By [21, Theorem 6], the set of orbits T2(p) = {φ(t, p), t ∈ T2},
p ∈ M , is a foliation of M by C1-embedded tori. Let T2

1 ̸= T2
2 be

two leaves, and let γ12 be a geodesic segment realizing the distance
between them and therefore perpendicular to them. As the action is
by isometries, the set {φ(t, γ12), t ∈ T2} is a foliation of the region
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enclosed by T2
1 and T2

2 by geodesic segments realizing the distance be-
tween T2

1 and T2
2 and perpendicular to them. As in this argumenta-

tion the leaves T2
1 and T2

2 are arbitrary, it follows that any inexten-
sible geodesic perpendicular to one leaf is also perpendicular to any
other leaf. Let γ(x), x the arc-length, be one of such geodesics. Define
ϕ : T2 × I → M , |I| = length(γ), as ϕ(t, x) = φ(t, γ(x)). By [21, See
(D) on p. 402 in particular] the map ϕ is a C1 diffeomorphism. We have
ϕ∗g = dx2 + h(x), where h(x) is a C0-path of T2-symmetric metrics
in T2. Let (y, z) be (local) flat coordinates on T2 that together with
x form (local and C1) coordinates. The standard Laplacian acting on
certain functions f at least can be computed in the coordinates (x, y, z)

as ∆f = [deth]−1/2(∂i(gij [det h]
1
2 ∂jf)) (because deth is just C0). Such

is the case22 when f = x, y or
∫ x[deth]−1/2dx. As deth = deth (x), the

coordinates y and z are harmonic (and C1) and therefore from standard
elliptic regularity also C2,β in M (recall for this that M is C2,β and g
is C1,β). It remains to see the regularity of x. Define a new coordinate
by x̄ =

∫ x[det h]−1/2dx. Then x̄ is harmonic and because it is C1, by
standard elliptic regularity again, it is C2,β in M . Therefore, (x̄, y, z) is
a harmonic and C2,β coordinate system. Hence in these coordinates the
metric coefficients gij are of class C1,β. Thus [deth]1/2 is of class C1,β,
and because x(x̄) =

∫ x̄[deth]1/2dx̄, we deduce that x is also C2,β in M .
q.e.d.

Proposition 4.2. Suppose that a sequence (Um, gm) with |Ricgm | ≤
Λ0 collapses metrically to (I, | |). Then there is a covering subsequence
(Ũmj , g̃mj ) (with covering maps πmj ) converging in C1,β to a T2-symmetric

space (T2 × I, dx2 + h̃(x)), and there is a sequence of functions fmj :
Umj → R, such that fmj ◦ πmj : T2 × I → R converges in C2 to the
coordinate function x. In particular, fixed a value of x, π−1mj

(f−1mj
(x))

converges in C2 to the slice T2 × {x}.

Proof. The first part of the claim—i.e., the existence of the covering
subsequence—is known to us from Lemma 2.1. Thus assume that

(Ũmj , g̃mj )
C1,β

−−−→ (T2 × I, g̃ = dx2 + h̃(x)).

Following [5] (see also [12, p. 336]), for every ϵ > 0 there are23 smooth-
ings gϵmj

of gmj such that

22To justify the∆f in these cases, multiply by a smooth and arbitrary test function
of compact support and integrate by parts.

23We remark that this useful smoothing procedure has been used recurrently in
[10] as it greatly simplifies the arguments. Our use does not differ much from the
purposes it was used there.
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distLip(gmj , g
ϵ
mj

) ≤ ϵ, |Ricgϵmj
| ≤ 2Λ0, and(22)

|∇(k)
gϵmj

Ricgϵmj
| ≤ Λk(ϵ), k ≥ 1,

where distLip is the Lipschitz distance (see [13, 12])24 . Moreover, we
have the following two properties for fixed ϵ.

E1. There is a subsequence of (Ũmj , g̃
ϵ
mj

) (indexed with mj again
but depending on ϵ) converging in C∞ and via diffeomorphisms
χj to (T2 × I, g̃ϵ = dx2 + h̃ϵ(x)). Hence, as discussed in Section
4.1, there is j0(ϵ) such that for every j ≥ j0(ϵ) and sequence of
functions Fj on Ũmj we have ∥χ∗jFj∥C2

g̃ϵ
≤ 2∥Fj∥C2

g̃ϵmj

.

E2. From Lemma 1.6 [11, p. 336], there are fibrations f ϵ
mj

: Umj → I
such that, for all k ≥ 1, ∥f ϵ

mj
◦ πmj∥Ck

g̃ϵmj

≤ C ′k(ϵ). Moreover,

f ϵ
mj
◦πmj converges in C1 to the function x in (T2×I, dx2+h̃ϵ(x)),

and, because of the estimates before, the convergence is also in

C∞. In particular, lim ∥χ∗j (πmj ◦ fmj )− x∥C2
g̃ϵ

j→∞−−−→ 0

And if we make ϵ→ 0, we have, because of the first two terms of (22),
the following property.

E3. As ϵ→ 0, the spaces (T2×I, dx2+ h̃ϵ(x)) converge in C1,β′

(β′ <
β) and via diffeomorphisms ϕϵ to (T2×I, dx2+ h̃(x)). Moreover,
by Proposition 4.1 the C2-coordinates x in them converge in C2

to the (by Proposition 4.1) C2-coordinate x in the limit space.

From E1 and E3 we immediately obtain that, for every ϵ(i) = 1/i,
i = 1, 2, 3, . . . one can find mj(i) with j(i) ≥ j0(ϵ(i)), in such a way that

the subsequence (Ũmj(i)
, g̃ϵ(i)mj(i)) converges in C1,β′

and via the diffeomor-

phisms χj(i) ◦ ϕϵ(i) to (T2 × I, dx2 + h̃(x)). Then we have

∥ϕ∗ϵ(i)χ
∗
j(i)(πmj(i)

◦ f ϵ(i)
mj(i)

)− x∥C2
g̃
≤

≤ ∥ϕ∗ϵ(i)χ
∗
j(i)(πmj(i)

◦ f ϵ(i)
mj(i)

)− ϕ∗ϵ(i)x+ ϕ∗ϵ(i)x− x∥C2
g̃

≤ 2∥χ∗j(i)(πmj(i)
◦ f ϵ(i)

mj(i)
)− x∥C2

g̃
ϵ(i)
mj(i)

+ ∥ϕ∗ϵ(i)x− x∥C2
g̃
,

where the last term tends to zero as i→∞. q.e.d.

Proof of Lemma 2.1. The result is a straightforward consequence of
the assumption that (Mi, gi) ∈ M(N0) for some fixed N0 and the re-
sults in [10]. There are, however, some technical points that are better

24Note that what makes these estimates useful is that they are independent from
the injectivity radius.
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to clarify, and these have to do with the fact that several metrics are
involved at the same time. Fukaya’s proofs of course will not be repeated
here, and we refer the reader to his articles for full information.

For every “i” let M̆◦
i (pi) be the connected component of M◦

i contain-
ing pi, and let di = dMi

gi . We let M ϵ
i (pi) := M̆◦

i (pi) \ Tdi(∂Mi, ϵ) and
similarly for M ϵ

i (pi). From Proposition 2.2 we can take a subsequence
(index again by “i”) such that (M ϵ

i (pi), di) converges to a compact met-
ric space (Xϵ, dϵ). The subsequence can be chosen in such a way that
M ϵ

i (pi) converges (as a compact set) to Xϵ ⊂ Xϵ. We keep using this
sequence in the following.

Following [10] 25 , for every x ∈ Xϵ there is δ(x) ≤ (ϵ − ϵ)/2 such
that (Bdϵ(x, δ(x)), dϵ) is locally isometric to a model space I.a, I.b, II.a,
or II.b. Consider then in Bdϵ(x, δ(x)) the corresponding Riemannian
metric and denote it by gϵ. In addition to this information, there is a
sequence of points qi ∈M ϵ

i (pi) with qi → x, such that (Bgi(qi, δ(x)), gi)

converges in the GH-topology to (Bdϵ(x, δ(x)), gϵ).
Now, using the compactness of Xϵ, one can pick points x1, . . . , xJ in

Xϵ such that the balls Bdϵ(xj , δ(xj)/4), j = 1, . . . , J , cover Xϵ. Assume
that pi converges to a point x0, that points pj,i converge to xj , and

that the union
⋃j=J

j=1 Bdϵ(xj , δ(xj)/4) is connected (otherwise, take the
connected component of the union containing x0). Then it is direct to
check that

(
j=J⋃

j=1

Bgi(pj,i, δ(xj)), gi)
GH−−→ (

j=J⋃

j=1

Bdϵ(xj , δ(xj)), g
ϵ).

Then one can use the local construction in [10, p. 9] (which is based on
[9]) to find C1 functions

fi :
j=J⋃

j=1

Bgi(pj,i, 3δ(xj)/4)→ Xϵ,

(but non-surjective) satisfying the properties in Theorem 0.12 of [10]

and with range covering
⋃j=J

j=1 Bdϵ(xj , δ(xj)/2). The Ωi’s and the space
(X, d) are finally defined as

Ωi := f−1i (
j=J⋃

j=1

Bdϵ(xj , δ(xj)/2)),

(X, d) := (
j=J⋃

j=1

Bdϵ(xj , δ(xj)/2), g
ϵ),

25Recall the discussion after the statement of Lemma 2.1.
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with (X, d) satisfying D1 and D2 by construction. We then have

(Ωi, gi)
GH−−→ (X, d) and fi : (Ωi, gi) → (X, d) with the properties I1

which correspond in our case to properties (0.13.1) and (0.13.2) of The-
orem 0.12 of [10].

We discuss now how to show I2 in case D1. The case D2 is done
along similar lines. and as we will not use it in this article, the proof is
left to the reader. Take covers (Ω̃i, g̃i) to have the injectivity radius at
one point controlled away from zero. Leave aside for a moment the issue
of the existence of such cover. As |Ricg̃i | ≤ Λ0, we can take a convergent
subsequence, say, to (Ω̃, g̃). The group of Deck-covering transformations
of Ω̃i converge necessarily to a closed group G of isometries of the limit
space (Ω̃, g̃). On the other hand, for any x ∈ X \ Sing(X), the fiber
π−1i (f−1i (x)) that covers the torus f−1i (x) under πi converges to a torus,
say, T̃ 2(x) ⊂ Ω̃. The group G acts effectively26 by isometries on T̃ 2(x)
and its quotient is a point. It follows that G is a torus.

To show that there are covers as mentioned before, observe that, from
Lemma 2.1, any “sufficiently collapsed” manifold (of bounded diameter
and curvature) must possess at least one small and non-contractible
loop. Now, in caseD1, the manifolds Ωi are diffeomorphic to either T2×I
or B2 × S1, whose fundamental groups are Z × Z and Z, respectively.
In either case, one can then take (controlled) covers having no non-
contractible and small loops. In this way, the cover is necessarily non-
collapsed. q.e.d.
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2007, Based on the 1981 French original, With appendices by M. Katz, P.
Pansu and S. Semmes, Translated from the French by Sean Michael Bates.
MR 2307192 (2007k:53049)

[14] S. W. Hawking, Gravitational instantons, Phys. Lett. A 60 (1977), no. 2, 81–83.
MR 0465052 (57 #4965)

[15] Peter Li, Large time behavior of the heat equation on complete manifolds
with nonnegative Ricci curvature, Ann. of Math. (2) 124 (1986), no. 1, 1–21.
MR 847950 (87k:58259)

[16] W. B. Raymond Lickorish, An introduction to knot theory, Gradu-
ate Texts in Mathematics, vol. 175, Springer-Verlag, New York, 1997.
MR 1472978 (98f:57015)

[17] Gang Liu, 3-manifolds with nonnegative Ricci curvature, Invent. Math. 193
(2013), no. 2, 367–375. MR 3090181

[18] Zhong-dong Liu, Ball covering on manifolds with nonnegative Ricci curva-
ture near infinity, Proc. Amer. Math. Soc. 115 (1992), no. 1, 211–219.
MR 1068127 (92h:53046)

[19] John Lott and Zhongmin Shen, Manifolds with quadratic curvature decay and
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